ﻻ يوجد ملخص باللغة العربية
Fast Radio Bursts (FRBs) are bright enigmatic radio pulses of roughly millisecond duration that come from extragalactic distances. As part of the MeerTRAP project, we use the MeerKAT telescope array in South Africa to search for and localise those bursts to high precision in real-time. We aim to pinpoint FRBs to their host galaxies and, thereby, to understand how they are created. However, the transient nature of FRBs presents various challenges, e.g. in system design, raw compute power and real-time communication, where the real-time requirements are reasonably strict (a few tens of seconds). Rapid data processing is essential for us to be able to retain high-resolution data of the bursts, to localise them, and to minimise the delay for follow-up observations. We give a short overview of the data analysis pipeline, describe the challenges faced, and elaborate on our initial design and implementation of a real-time triggering infrastructure for FRBs at the MeerKAT telescope.
The aim of this white paper is to discuss the observing strategies for the LSST Wide-Fast-Deep that would improve the study of blazars (emission variability, census, environment) and Fast Radio Bursts (FRBs). For blazars, these include the adoption o
Polarimetric observations of Fast Radio Bursts (FRBs) are a powerful resource for better understanding these mysterious sources by directly probing the emission mechanism of the source and the magneto-ionic properties of its environment. We present a
Glitches are the observational manifestations of superfluidity inside neutron stars. The aim of this paper is to describe an automated glitch detection pipeline, which can alert the observers on possible real-time detection of rotational glitches in
Fast radio bursts are a new class of transient radio phenomena currently detected as millisecond radio pulses with very high dispersion measures. As new radio surveys begin searching for FRBs a large population is expected to be detected in real-time
We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between June 2017 and December 2018. By using a real-time FRB detection system, we captured raw voltages for five of the six events, whic