ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal $L^{-3}$ finite-size effects in the viscoelasticity of confined amorphous systems

69   0   0.0 ( 0 )
 نشر من قبل Alessio Zaccone
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theory of viscoelasticity of amorphous media, which takes into account the effects of confinement along one of three spatial dimensions. The framework is based on the nonaffine extension of lattice dynamics to amorphous systems, or nonaffine response theory. The size effects due to the confinement are taken into account via the nonaffine part of the shear storage modulus $G$. The nonaffine contribution is written as a sum over modes in $k$-space. With a rigorous argument based on the analysis of the $k$-space integral over modes, it is shown that the confinement size $L$ in one spatial dimension, e.g. the $z$ axis, leads to a infrared cut-off for the modes contributing to the nonaffine (softening) correction to the modulus that scales as $L^{-3}$. Corrections for finite sample size $D$ in the two perpendicular dimensions scale as $sim (L/D)^4$, and are negligible for $L ll D$. For liquids it is predicted that $Gsim L^{-3}$ in agreement with a previous more approximate analysis, whereas for amorphous materials $G sim G_{bulk} + beta L^{-3}$. For the case of liquids, four different experimental systems are shown to be very well described by the $L^{-3}$ law.



قيم البحث

اقرأ أيضاً

We demonstrate that a two-dimensional finite and periodic array of Ising spins coupled via RKKY-like exchange can exhibit tunable magnetic states ranging from three distinct magnetic regimes: (1) a conventional ferromagnetic regime, (2) a glass-like regime, and (3) a new multi-well regime. These magnetic regimes can be tuned by one gate-like parameter, namely the ratio between the lattice constant and the oscillating interaction wavelength. We characterize the various magnetic regimes, quantifying the distribution of low energy states, aging relaxation dynamics, and scaling behavior. The glassy and multi-well behavior results from the competing character of the oscillating long-range exchange interactions. The multi-well structure features multiple attractors, each with a sizable basin of attraction. This may open the possible application of such atomic arrays as associative memories.
It is known by now that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus which exists, all the higher order coefficients do not exist in the thermodynamic limit. Here we show that the same p henomenon persists up to temperatures comparable to the glass transition. The zero temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.
We re-examine attempts to study the many-body localization transition using measures that are physically natural on the ergodic/quantum chaotic regime of the phase diagram. Using simple scaling arguments and an analysis of various models for which ri gorous results are available, we find that these measures can be particularly adversely affected by the strong finite-size effects observed in nearly all numerical studies of many-body localization. This severely impacts their utility in probing the transition and the localized phase. In light of this analysis, we argue that a recent study [v{S}untajs et al., arXiv:1905.06345] of the behavior of the Thouless energy and level repulsion in disordered spin chains likely reaches misleading conclusions, in particular as to the absence of MBL as a true phase of matter.
The low-temperature Hall resistivity rho_{xy} of La_{2/3}A_{1/3}MnO_3 single crystals (where A stands for Ca, Pb and Ca, or Sr) can be separated into Ordinary and Anomalous contributions, giving rise to Ordinary and Anomalous Hall effects, respective ly. However, no such decomposition is possible near the Curie temperature which, in these systems, is close to metal-to-insulator transition. Rather, for all of these compounds and to a good approximation, the rho_{xy} data at various temperatures and magnetic fields collapse (up to an overall scale), on to a single function of the reduced magnetization m=M/M_{sat}, the extremum of this function lying at m~0.4. A new mechanism for the Anomalous Hall Effect in the inelastic hopping regime, which reproduces these scaling curves, is identified. This mechanism, which is an extension of Holsteins model for the Ordinary Hall effect in the hopping regime, arises from the combined effects of the double-exchange-induced quantal phase in triads of Mn ions and spin-orbit interactions. We identify processes that lead to the Anomalous Hall Effect for localized carriers and, along the way, analyze issues of quantum interference in the presence of phonon-assisted hopping. Our results suggest that, near the ferromagnet-to-paramagnet transition, it is appropriate to describe transport in manganites in terms of carrier hopping between states that are localized due to combined effect of magnetic and non-magnetic disorder. We attribute the qualitative variations in resistivity characteristics across manganite compounds to the differing strengths of their carrier self-trapping, and conclude that both disorder-induced localization and self-trapping effects are important for transport.
Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterize their behaviour at the particle scale. While 2D observation s are now routinely carried out in laboratories, 3D measurements remain a challenge. In this paper, we use a simple model system, a packing of soft elastic spheres, to illustrate the capability of X-ray microtomography to characterise the internal structure and local behaviour of granular systems. Image analysis techniques can resolve grain positions, shapes and contact areas; this is used to investigate the materials microstructure and its evolution upon strain. In addition to morphological measurements, we develop a technique to quantify contact forces and estimate the internal stress tensor. As will be illustrated in this paper, this opens the door to a broad array of static and dynamical measurements in 3D disordered systems
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا