ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic Proton Back-Precipitation onto the Solar Atmosphere in Relation to Long-Duration Gamma-Ray Flares

69   0   0.0 ( 0 )
 نشر من قبل Adam Hutchinson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray emission during Long-Duration Gamma-Ray Flare (LDGRF) events is thought to be caused mainly by $>$300 MeV protons interacting with the ambient plasma at or near the photosphere. Prolonged periods of the gamma-ray emission have prompted the suggestion that the source of the energetic protons is acceleration at a Coronal Mass Ejection (CME)-driven shock, followed by particle back-precipitation onto the solar atmosphere over extended times. We study the latter phenomenon using test particle simulations, which allow us to investigate whether scattering associated with turbulence aids particles in overcoming the effect of magnetic mirroring, which reflects particles as they travel sunwards. The instantaneous precipitation fraction, $P$, the proportion of protons that successfully precipitate for injection at a fixed height, $r_i$, is studied as a function of scattering mean free path, $lambda$ and $r_i$. We find that the presence of scattering helps back-precipitation compared to the scatter-free case, although at very low $lambda$ values outward convection with the solar wind ultimately dominates. Upper limits to the total precipitation fraction, $overline{P}$, are calculated for 8 LDGRF events for moderate scattering conditions ($lambda$=0.1 AU). Due to strong mirroring, $overline{P}$ is very small for these events, between 0.56 and 0.93% even in the presence of scattering. Time-extended acceleration and large total precipitation fractions, as seen in the observations, cannot be reconciled for a moving shock source according to our simulations. These results challenge the CME-shock source scenario as the main mechanism for gamma-ray production in LDGRFs.



قيم البحث

اقرأ أيضاً

Little is known about the origin of the high-energy and sustained emission from solar Long-Duration Gamma-Ray Flares (LDGRFs), identified with the Compton Gamma Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/Larg e Area Space Telescope (LAT) has identified dozens of flares with LDGRF signature, the nature of this phenomenon has been a challenge to explain both due to the extreme energies and long durations. The highest-energy emission has generally been attributed to pion production from the interaction of >300 MeV protons with the ambient matter. The extended duration suggests that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from coronal mass ejection driven shocks. It is possible to test these models by making direct comparison between the properties of the accelerated ion population producing the gamma-ray emission derived from the Fermi/LAT observations, and the characteristics of solar energetic particles (SEPs) measured by the Payload for Matter-Antimatter Exploration and Light Nuclei Astrophysics (PAMELA) spacecraft in the energy range corresponding to the pion-related emission detected with Fermi. For fourteen of these events we compare the two populations -- SEPs in space and the interacting particles at the Sun -- and discuss the implications in terms of potential sources. Our analysis shows that the two proton numbers are poorly correlated, with their ratio spanning more than five orders of magnitude, suggesting that the back precipitation of shock-acceleration particles is unlikely the source of the LDGRF emission.
Two scenarios have been proposed to account for sustained $ge 30$,MeV gamma-ray emission in solar flares: (1) prolonged particle acceleration/trapping involving large-scale magnetic loops at the flare site, and (2) precipitation of high-energy ($>$ 3 00 MeV) protons accelerated at coronal/interplanetary shock waves. To determine which of these scenarios is more likely, we examine the associated soft X-ray flares, coronal mass ejections (CMEs), and solar energetic proton events (SEPs) for: (a) the long-duration gamma-ray flares (LDGRFs) observed by the Large Area Telescope (LAT) on Fermi, and (b) delayed and/or spatially-extended high-energy gamma-ray flares observed by the Gamma-ray Spectrometer on the Solar Maximum Mission, the Gamma-1 telescope on the Gamma satellite, and the Energetic Gamma-Ray Experiment Telescope on the Compton Gamma-Ray Observatory. For the Fermi data set of 11 LDGRFs with $>$100 MeV emission lasting for $ge sim 2$ hours, we search for associations and reverse associations between LDGRFs, X-ray flares, CMEs, and SEPs, i.e., beginning with the gamma-ray flares and also, in turn, with X-class soft X-ray flares, fast ($ge$ 1500 km s$^{-1}$) and wide CMEs, and intense (peak flux $ge 2.67 times 10^{-3}$ protons cm$^{-2}$ s$^{-1}$ sr$^{-1}$, with peak to background ratio $>$ 1.38) $>$ 300 MeV SEPs at 1 A.U. While LDGRFs tend to be associated with bright X-class flares, we find that only 1/3 of the X-class flares during the time of Fermi monitoring coincide with an LDGRF. However, nearly all fast, wide CMEs are associated with an LDGRF. These preliminary association analyses favor the proton precipitation scenario, although there is a prominent counter-example of a potentially magnetically well-connected solar eruption with $>$ 100 MeV emission for $sim 10$ h for which the near-Earth $>$ 300 MeV proton intensity did not rise above background.
We characterize and provide a catalog of thirty >100 MeV sustained gamma-ray emission (SGRE) events observed by Fermi LAT. These events are temporally and spectrally distinct from the associated solar flares. Their spectra are consistent with decay o f pions produced by >300 MeV protons and are not consistent with electron bremsstrahlung. SGRE start times range from CME onset to two hours later. Their durations range from about four minutes to twenty hours and appear to be correlated with durations of >100 MeV SEP proton events. The >300 MeV protons producing SGRE have spectra that can be fit with power laws with a mean index of ~4 and RMS spread of 1.8. Gamma-ray line measurements indicate that SGRE proton spectra are steeper above 300 MeV than they are below 300 MeV. The number of SGRE protons >500 MeV is on average about ten times more than then the number in the associated flare and about fifty to one hundred times less than the number in the accompanying SEP. SGRE can extend tens of degrees from the are site. Sustained bremsstrahlung from MeV electrons was observed in one SGRE event. Flare >100 keV X-ray emission appears to be associated with SGRE and with intense SEPs. From this observation, we provide arguments that lead us to propose that sub-MeV to MeV protons escaping from the flare contribute to the seed population that is accelerated by shocks onto open field lines to produce SEPs and onto field lines returning to the Sun to produce SGRE.
The Fermi Large Area Telescope (LAT) observed two bright X-class solar flares on 2012 March 7, and detected gamma-rays up to 4 GeV. We detected gamma-rays both during the impulsive and temporally-extended emission phases, with emission above 100 MeV lasting for approximately 20 hours. Accurate localization of the gamma-ray production site(s) coincide with the solar active region from which X-ray emissions associated with these flares originated. Our analysis of the >100 MeV gamma-ray emission shows a relatively rapid monotonic decrease in flux during the first hour of the impulsive phase, and a much slower, almost monotonic decrease in flux for the next 20 hours. The spectra can be adequately described by a power law with a high energy exponential cutoff, or as resulting from the decay of neutral pions produced by accelerated protons and ions with an isotropic power-law energy distribution. The required proton spectrum has a number index ~3, with minor variations during the impulsive phase, while during the temporally extended phase the spectrum softens monotonically, starting with index ~4. The >30 MeV proton flux and spectra observed near the Earth by the GOES satellites also show a monotonic flux decrease and spectral softening during the extended phase, but with a harder spectrum, with index ~3. Based on the Fermi-LAT and GOES observations of the flux and spectral evolution of these bright flares, we explore the relative merits of prompt and continuous acceleration scenarios, hadronic and leptonic emission processes, and acceleration at the solar corona by the fast Coronal Mass Ejections (CME) as explanations for the observations. We conclude that the most likely scenario is continuous acceleration of protons in the solar corona which penetrate the lower solar atmosphere and produce pions that decay into gamma-rays.
Context. The observation of >100 MeV {gamma}-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when {gamma }-rays are detected even when the solar eruptions occurred beyond the solar limb as viewed from Earth provide favorable viewing conditions for studying the role of coronal shocks driven by coronal mass ejections (CMEs) in the acceleration of these particles. Aims: In this paper, we investigate the spatial and temporal evolution of the coronal shocks inferred from stereoscopic observations of behind-the-limb flares to determine if they could be the source of the particles producing the {gamma}-rays. Methods: We analyzed the CMEs and early formation of coronal shocks associated with {gamma}-ray events measured by the Fermi-Large Area Telescope (LAT) from three eruptions behind the solar limb as viewed from Earth on 2013 Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based on remote-sensing observations to model the expansion of the CME shocks from above the solar surface to the upper corona. Coupling the expansion model to various models of the coronal magnetic field allowed us to derive the time-dependent distribution of shock Mach numbers and the magnetic connection of particles produced by the shock to the solar surface visible from Earth. Results: The reconstructed shock fronts for the three events became magnetically connected to the visible solar surface after the start of the flare and just before the onset of the >100 MeV {gamma}-ray emission. The shock surface at these connections also exhibited supercritical Mach numbers required for significant particle energization. [...] (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا