ﻻ يوجد ملخص باللغة العربية
Gamma-ray emission during Long-Duration Gamma-Ray Flare (LDGRF) events is thought to be caused mainly by $>$300 MeV protons interacting with the ambient plasma at or near the photosphere. Prolonged periods of the gamma-ray emission have prompted the suggestion that the source of the energetic protons is acceleration at a Coronal Mass Ejection (CME)-driven shock, followed by particle back-precipitation onto the solar atmosphere over extended times. We study the latter phenomenon using test particle simulations, which allow us to investigate whether scattering associated with turbulence aids particles in overcoming the effect of magnetic mirroring, which reflects particles as they travel sunwards. The instantaneous precipitation fraction, $P$, the proportion of protons that successfully precipitate for injection at a fixed height, $r_i$, is studied as a function of scattering mean free path, $lambda$ and $r_i$. We find that the presence of scattering helps back-precipitation compared to the scatter-free case, although at very low $lambda$ values outward convection with the solar wind ultimately dominates. Upper limits to the total precipitation fraction, $overline{P}$, are calculated for 8 LDGRF events for moderate scattering conditions ($lambda$=0.1 AU). Due to strong mirroring, $overline{P}$ is very small for these events, between 0.56 and 0.93% even in the presence of scattering. Time-extended acceleration and large total precipitation fractions, as seen in the observations, cannot be reconciled for a moving shock source according to our simulations. These results challenge the CME-shock source scenario as the main mechanism for gamma-ray production in LDGRFs.
Little is known about the origin of the high-energy and sustained emission from solar Long-Duration Gamma-Ray Flares (LDGRFs), identified with the Compton Gamma Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/Larg
Two scenarios have been proposed to account for sustained $ge 30$,MeV gamma-ray emission in solar flares: (1) prolonged particle acceleration/trapping involving large-scale magnetic loops at the flare site, and (2) precipitation of high-energy ($>$ 3
We characterize and provide a catalog of thirty >100 MeV sustained gamma-ray emission (SGRE) events observed by Fermi LAT. These events are temporally and spectrally distinct from the associated solar flares. Their spectra are consistent with decay o
The Fermi Large Area Telescope (LAT) observed two bright X-class solar flares on 2012 March 7, and detected gamma-rays up to 4 GeV. We detected gamma-rays both during the impulsive and temporally-extended emission phases, with emission above 100 MeV
Context. The observation of >100 MeV {gamma}-rays in the minutes to hours following solar flares suggests that high-energy particles interacting in the solar atmosphere can be stored and/or accelerated for long time periods. The occasions when {gamma