ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle-in-Cell Techniques for the Study of Space Charge Effects in the Advanced Cryogenic Gas Stopper

69   0   0.0 ( 0 )
 نشر من قبل Ryan Ringle
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear gas stoppers are widely used to convert high-energy, rare-isotope beams and reaction products into low-energy beams with small transverse emittance and energy spread. Stopping of the high-energy ions is achieved through interaction with a buffer gas, typically helium, generating large quantities of He$^+$/e$^-$ pairs. The Advanced Cryogenic Gas Stopper (ACGS) was designed for fast, efficient stopping and extraction of high-intensity, rare-isotope beams. As part of the design process, a comprehensive particle-in-cell code was developed to optimize the transport and extraction of rare isotopes from the ACGS in the presence of space charge, including He$^+$/e$^-$ dynamics, buffer gas interactions including gas flow, RF carpets, and ion extraction through a nozzle or orifice. Details of the simulations are presented together with comparison to experiment when available.



قيم البحث

اقرأ أيضاً

The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency, shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.
59 - Alexey Burov 2021
Coulomb fields of charged particle beams in circular machines determine, together with wake fields, modes of the collective beam oscillations, both for transverse and longitudinal degrees of freedom. Recent progress in these two areas of beam dynamics is discussed.
181 - Alexey Burov 2020
A brief historical review is presented of progressing understanding of transverse coherent instabilities of charged particles beams in circular machines when both Coulomb and wake fields are important. The paper relates to a talk given at ICFA Worksh op on Mitigation of Coherent Beam Instabilities in Particle Accelerators, 23-27 September 2019 in Zermatt, Switzerland.
236 - C.Y. Tsang , J. Estee , R. Wang 2019
Time projection chambers (TPCs) are widely used in nuclear and particle physics. They are particularly useful when measuring reaction products from heavy ion collisions. Most nuclear experiments at low energy are performed in a fixed target configura tion, in which the unreacted beam will pass through the detection volume. As the beam intensity increases, the buildup of positive ions created from the ionization of the detector gas by the beam creates the main source of space charge, distorting the nominal electric field of the TPC. This has a profound effect on the accuracy of the measured momenta of the emitted particles. In this paper we will discuss the magnitude of the effects and construct an observable more appropriate for fixed target experiments to study the effects. We also will present an algorithm for correcting the space charge and some of the implications it has on the momentum determination.
In recent years, several gauge-symmetric particle-in-cell (PIC) methods have been developed whose simulations of particles and electromagnetic fields exactly conserve charge. While it is rightly observed that these methods gauge symmetry gives rise t o their charge conservation, this causal relationship has generally been asserted via ad hoc derivations of the associated conservation laws. In this work, we develop a comprehensive theoretical grounding for charge conservation in gauge-symmetric Lagrangian and Hamiltonian PIC algorithms. For Lagrangian variational PIC methods, we apply Noethers second theorem to demonstrate that gauge symmetry gives rise to a local charge conservation law as an off-shell identity. For Hamiltonian splitting methods, we show that the momentum map establishes their charge conservation laws. We define a new class of algorithms -- gauge-compatible splitting methods -- that exactly preserve the momentum map associated with a Hamiltonian systems gauge symmetry -- even after time discretization. This class of algorithms affords splitting schemes a decided advantage over alternative Hamiltonian integrators. We apply this general technique to design a novel, explicit, symplectic, gauge-compatible splitting PIC method, whose momentum map yields an exact local charge conservation law. Our study clarifies the appropriate initial conditions for such schemes and examines their symplectic reduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا