ترغب بنشر مسار تعليمي؟ اضغط هنا

Robotic Communications for 5G and Beyond: Challenges and Research Opportunities

91   0   0.0 ( 0 )
 نشر من قبل Xiao Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The ongoing surge in applications of robotics brings both opportunities and challenges for the fifth-generation (5G) and beyond (B5G) of communication networks. This article focuses on 5G/B5G-enabled terrestrial robotic communications with an emphasis on distinct characteristics of such communications. Firstly, signal and spatial modeling for robotic communications are presented. To elaborate further, both the benefits and challenges derived from robots mobility are discussed. As a further advance, a novel simultaneous localization and radio mapping (SLARM) framework is proposed for integrating localization and communications into robotic networks. Furthermore, dynamic trajectory design and resource allocation for both indoor and outdoor robots are provided to verify the performance of robotic communications in the context of typical robotic application scenarios.

قيم البحث

اقرأ أيضاً

The objective of this paper is to present a systematic review of existing sensor-based control methodologies for applications that involve direct interaction between humans and robots, in the form of either physical collaboration or safe coexistence. To this end, we first introduce the basic formulation of the sensor-servo problem, then present the most common approaches: vision-based, touch-based, audio-based, and distance-based control. Afterwards, we discuss and formalize the methods that integrate heterogeneous sensors at the control level. The surveyed body of literature is classified according to the type of sensor, to the way multiple measurements are combined, and to the target objectives and applications. Finally, we discuss open problems, potential applications, and future research directions.
Wearable robots are undergoing a disruptive transition, from the rigid machines that populated the science-fiction world in the early eighties to lightweight robotic apparel, hardly distinguishable from our daily clothes. In less than a decade of dev elopment, soft robotic suits have achieved important results in human motor assistance and augmentation. In this paper, we start by giving a definition of soft robotic suits and proposing a taxonomy to classify existing systems. We then critically review the modes of actuation, the physical human-robot interface and the intention-detection strategies of state of the art soft robotic suits, highlighting the advantages and limitations of different approaches. Finally, we discuss the impact of this new technology on human movements, for both augmenting human function and supporting motor impairments, and identify areas that are in need of further development.
A robotic trans-esophageal echocardiography (TEE) probe has been recently developed to address the problems with manual control in the X-ray envi-ronment when a conventional probe is used for interventional procedure guidance. However, the robot was exclusively to be used in local areas and the effectiveness of remote control has not been scientifically tested. In this study, we implemented an Internet-of-things (IoT)-based configuration to the TEE robot so the system can set up a local area network (LAN) or be configured to connect to an internet cloud over 5G. To investigate the re-mote control, backlash hysteresis effects were measured and analysed. A joy-stick-based device and a button-based gamepad were then employed and compared with the manual control in a target reaching experiment for the two steering axes. The results indicated different hysteresis curves for the left-right and up-down steering axes with the input wheels deadbands found to be 15 deg and deg, respectively. Similar magnitudes of positioning errors at approximately 0.5 deg and maximum overshoots at around 2.5 deg were found when manually and robotically controlling the TEE probe. The amount of time to finish the task indicated a better performance using the button-based gamepad over joystick-based device, although both were worse than the manual control. It is concluded that the IoT-based remote control of the TEE probe is feasible and a trained user can accurately manipulate the probe. The main identified problem was the backlash hysteresis in the steering axes, which can result in continuous oscillations and overshoots.
Broadband access is key to ensuring robust economic development and improving quality of life. Unfortunately, the communication infrastructure deployed in rural areas throughout the world lags behind its urban counterparts due to low population densi ty and economics. This article examines the motivations and challenges of providing broadband access over vast rural regions, with an emphasis on the wireless aspect in view of its irreplaceable role in closing the digital gap. Applications and opportunities for future rural wireless communications are discussed for a variety of areas, including residential welfare, digital agriculture, and transportation. This article also comprehensively investigates current and emerging wireless technologies that could facilitate rural deployment. Although there is no simple solution, there is an urgent need for researchers to work on coverage, cost, and reliability of rural wireless access.
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability , resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا