ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Facial Landmark Detection by Multi-order Multi-constraint Deep Networks

112   0   0.0 ( 0 )
 نشر من قبل Jun Wan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, heatmap regression has been widely explored in facial landmark detection and obtained remarkable performance. However, most of the existing heatmap regression-based facial landmark detection methods neglect to explore the high-order feature correlations, which is very important to learn more representative features and enhance shape constraints. Moreover, no explicit global shape constraints have been added to the final predicted landmarks, which leads to a reduction in accuracy. To address these issues, in this paper, we propose a Multi-order Multi-constraint Deep Network (MMDN) for more powerful feature correlations and shape constraints learning. Specifically, an Implicit Multi-order Correlating Geometry-aware (IMCG) model is proposed to introduce the multi-order spatial correlations and multi-order channel correlations for more discriminative representations. Furthermore, an Explicit Probability-based Boundary-adaptive Regression (EPBR) method is developed to enhance the global shape constraints and further search the semantically consistent landmarks in the predicted boundary for robust facial landmark detection. Its interesting to show that the proposed MMDN can generate more accurate boundary-adaptive landmark heatmaps and effectively enhance shape constraints to the predicted landmarks for faces with large pose variations and heavy occlusions. Experimental results on challenging benchmark datasets demonstrate the superiority of our MMDN over state-of-the-art facial landmark detection methods. The code has been publicly available at https://github.com/junwan2014/MMDN-master.

قيم البحث

اقرأ أيضاً

Recently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate multiple correlated facial parts and learn different semantic features from them that they can not accurately model the relationships among the local details and can not fully explore more discriminative and fine semantic features, thus they suffer from partial occlusions and large pose variations. To address these problems, we propose a cross-order cross-semantic deep network (CCDN) to boost the semantic features learning for robust facial landmark detection. Specifically, a cross-order two-squeeze multi-excitation (CTM) module is proposed to introduce the cross-order channel correlations for more discriminative representations learning and multiple attention-specific part activation. Moreover, a novel cross-order cross-semantic (COCS) regularizer is designed to drive the network to learn cross-order cross-semantic features from different activation for facial landmark detection. It is interesting to show that by integrating the CTM module and COCS regularizer, the proposed CCDN can effectively activate and learn more fine and complementary cross-order cross-semantic features to improve the accuracy of facial landmark detection under extremely challenging scenarios. Experimental results on challenging benchmark datasets demonstrate the superiority of our CCDN over state-of-the-art facial landmark detection methods.
We present a new loss function, namely Wing loss, for robust facial landmark localisation with Convolutional Neural Networks (CNNs). We first compare and analyse different loss functions including L2, L1 and smooth L1. The analysis of these loss func tions suggests that, for the training of a CNN-based localisation model, more attention should be paid to small and medium range errors. To this end, we design a piece-wise loss function. The new loss amplifies the impact of errors from the interval (-w, w) by switching from L1 loss to a modified logarithm function. To address the problem of under-representation of samples with large out-of-plane head rotations in the training set, we propose a simple but effective boosting strategy, referred to as pose-based data balancing. In particular, we deal with the data imbalance problem by duplicating the minority training samples and perturbing them by injecting random image rotation, bounding box translation and other data augmentation approaches. Last, the proposed approach is extended to create a two-stage framework for robust facial landmark localisation. The experimental results obtained on AFLW and 300W demonstrate the merits of the Wing loss function, and prove the superiority of the proposed method over the state-of-the-art approaches.
We present a method for highly efficient landmark detection that combines deep convolutional neural networks with well established model-based fitting algorithms. Motivated by established model-based fitting methods such as active shapes, we use a PC A of the landmark positions to allow generative modeling of facial landmarks. Instead of computing the model parameters using iterative optimization, the PCA is included in a deep neural network using a novel layer type. The network predicts model parameters in a single forward pass, thereby allowing facial landmark detection at several hundreds of frames per second. Our architecture allows direct end-to-end training of a model-based landmark detection method and shows that deep neural networks can be used to reliably predict model parameters directly without the need for an iterative optimization. The method is evaluated on different datasets for facial landmark detection and medical image segmentation. PyTorch code is freely available at https://github.com/justusschock/shapenet
In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized to provide control points for deformation. Bilinear interpolation is used in the expansion and Moving Least Squares methods (MLS) including Affine Deformation, Similarity Deformation and Rigid Deformation are used in the shrinking. We compare the running time as well as the quality of deformed images using different MLS methods. The experimental results show that the Rigid Deformation which can keep other parts of the images unchanged performs better even if it takes the longest time.
We describe a deep learning based method for estimating 3D facial expression coefficients. Unlike previous work, our process does not relay on facial landmark detection methods as a proxy step. Recent methods have shown that a CNN can be trained to r egress accurate and discriminative 3D morphable model (3DMM) representations, directly from image intensities. By foregoing facial landmark detection, these methods were able to estimate shapes for occluded faces appearing in unprecedented in-the-wild viewing conditions. We build on those methods by showing that facial expressions can also be estimated by a robust, deep, landmark-free approach. Our ExpNet CNN is applied directly to the intensities of a face image and regresses a 29D vector of 3D expression coefficients. We propose a unique method for collecting data to train this network, leveraging on the robustness of deep networks to training label noise. We further offer a novel means of evaluating the accuracy of estimated expression coefficients: by measuring how well they capture facial emotions on the CK+ and EmotiW-17 emotion recognition benchmarks. We show that our ExpNet produces expression coefficients which better discriminate between facial emotions than those obtained using state of the art, facial landmark detection techniques. Moreover, this advantage grows as image scales drop, demonstrating that our ExpNet is more robust to scale changes than landmark detection methods. Finally, at the same level of accuracy, our ExpNet is orders of magnitude faster than its alternatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا