ﻻ يوجد ملخص باللغة العربية
It is shown that producing PrBaCo2O5 and Ba0.5Sr0.5Co0.8Fe0.2O3 nanoparticle by a scalable synthesis method leads to high mass activities for the oxygen evolution reaction with outstanding improvements by 10 and 50 times, respectively, compared to those prepared via the state of the art synthesis method. Here, detailed comparisons at both laboratory and industrial scales show that Ba0.5Sr0.5Co0.8Fe0.2O3 appears to be the most active and stable perovskite catalyst under alkaline conditions, while PrBaCo2O6 reveals thermodynamic instability described by the density functional theory based Pourbaix diagrams highlighting cation dissolution under oxygen evolution conditions. Operando Xray absorption spectroscopy is used in parallel to monitor electronic and structural changes of the catalysts during oxygen evolution reaction. The exceptional BSCF functional stability can be correlated to its thermodynamic metastability under oxygen evolution conditions as highlighted by Pourbaix diagram analysis. BSCF is able to dynamically self reconstruct its surface, leading to formation of Co based oxyhydroxide layers while retaining its structural stability. Differently, PBCO demonstrates a high initial oxygen evolution reaction activity while it undergoes a degradation process considering its thermodynamic instability under oxygen evolution conditions as anticipated by its Pourbaix diagram. Overall, this work demonstrates a synergetic approach of using both experimental and theoretical studies to understand the behavior of perovskite catalysts.
Symbolic regression (SR) is an emerging method for building analytical formulas to find models that best fit data sets. Here, SR was used to guide the design of new oxide perovskite catalysts with improved oxygen evolution reaction (OER) activities.
The d-band center descriptor based on the adsorption strength of adsorbate has been widely used in understanding and predicting the catalytic activity in various metal catalysts. However, its applicability is unsure for the single-atom-anchored two-d
In order to estimate the reactivity of a large number of potentially complex heterogeneous catalysts while searching for novel and more efficient materials, physical as well as data-centric models have been developed for a faster evaluation of adsorp
NiFe oxyhydroxide is one of the most promising oxygen evolution reaction (OER) catalysts for renewable hydrogen production, and deciphering the identity and reactivity of the oxygen intermediates on its surface is a key challenge but is critical to u
Considering the recent breakthroughs in the synthesis of novel two-dimensional (2D) materials from layered bulk structures, ternary layered transition metal borides, known as MAB phases, have come under scrutiny as a means of obtaining novel 2D trans