ترغب بنشر مسار تعليمي؟ اضغط هنا

First multi-redshift limits on post-Epoch of Reionization (post-EoR) 21 cm signal from z = 1.96 - 3.58 using uGMRT

62   0   0.0 ( 0 )
 نشر من قبل Arnab Chakraborty
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurement of fluctuations in diffuse HI 21 cm background radiation from the post-reionization epoch (z < 6) is a promising avenue to probe the large-scale structure of the Universe and understand the evolution of galaxies. We observe the European Large-Area ISO Survey-North 1 (ELAIS-N1) field at 300-500 MHz using the upgraded Giant Meterwave Radio Telescope (uGMRT) and employ the foreground avoidance technique to estimate the HI 21 cm power spectrum in the redshift range z = 1.96-3.58. Given the possible systematics that may remain in the data, we find the most stringent upper limits on the spherically averaged 21 cm power spectra at k~1.0 Mpc$^{-1}$ are (58.87 mK)$^2$, (61.49 mK)$^2$, (60.89 mK)$^2$, (105.85 mK)$^2$ at z = 1.96,2.19,2.62 and 3.58, respectively. We use this to constrain the product of neutral HI mass density (Omega_HI) and HI bias (b_HI) to the underlying dark matter density field, [Omega_HI*b_HI], as 0.09,0.11,0.12,0.24 at z=1.96,2.19,2.62,3.58, respectively. To the best of our knowledge these are the first limits on the HI 21 cm power spectra at the redshift range z = 1.96 - 3.58 and would play a significant role to constrain the models of galaxy formation and evolution.

قيم البحث

اقرأ أيضاً

We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evid ence for systematics that can be largely suppressed with systematic models down to a dynamic range of $sim10^9$ with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of $Delta^2_{21} le (30.76)^2 {rm mK}^2$ at $k=0.192 h {rm Mpc}^{-1}$ at $z=7.9$, and also $Delta^2_{21} le (95.74)^2 {rm mK}^2$ at $k=0.256 h {rm Mpc}^{-1}$ at $z=10.4$. At $z=7.9$, these limits are the most sensitive to-date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier $k_parallel$ modes, at high $k_parallel$ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable sub-reflections, or residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.
The relative velocity between baryons and dark matter in the early Universe can suppress the formation of small-scale baryonic structure and leave an imprint on the baryon acoustic oscillation (BAO) scale at low redshifts after reionization. This str eaming velocity affects the post-reionization gas distribution by directly reducing the abundance of pre-existing mini-halos ($lesssim 10^7 M_{bigodot}$) that could be destroyed by reionization and indirectly modulating reionization history via photoionization within these mini-halos. In this work, we investigate the effect of streaming velocity on the BAO feature in HI 21 cm intensity mapping after reionization, with a focus on redshifts $3.5lesssim zlesssim5.5$. We build a spatially modulated halo model that includes the dependence of the filtering mass on the local reionization redshift and thermal history of the intergalactic gas. In our fiducial model, we find isotropic streaming velocity bias coefficients $b_v$ ranging from $-0.0033$ at $z=3.5$ to $-0.0248$ at $z=5.5$, which indicates that the BAO scale is stretched (i.e., the peaks shift to lower $k$). In particular, streaming velocity shifts the transverse BAO scale between 0.087% ($z=3.5$) and 0.37% ($z=5.5$) and shifts the radial BAO scale between 0.13% ($z=3.5$) and 0.52% ($z=5.5$). These shifts exceed the projected error bars from the more ambitious proposed hemispherical-scale surveys in HI (0.13% at $1sigma$ per $Delta z = 0.5$ bin).
Recently, the Hydrogen Epoch of Reionization Array (HERA) collaboration has produced the experiments first upper limits on the power spectrum of 21-cm fluctuations at z~8 and 10. Here, we use several independent theoretical models to infer constraint s on the intergalactic medium (IGM) and galaxies during the epoch of reionization (EoR) from these limits. We find that the IGM must have been heated above the adiabatic cooling threshold by z~8, independent of uncertainties about the IGM ionization state and the nature of the radio background. Combining HERA limits with galaxy and EoR observations constrains the spin temperature of the z~8 neutral IGM to 27 K < T_S < 630 K (2.3 K < T_S < 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the CMB dominates the z~8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones (with soft band X-ray luminosities per star formation rate constrained to L_X/SFR = { 10^40.2, 10^41.9 } erg/s/(M_sun/yr) at 68% confidence), consistent with expectations of X-ray binaries in low-metallicity environments. The z~10 limits require even earlier heating if dark-matter interactions (e.g., through millicharges) cool down the hydrogen gas. Using a model in which an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L_{r, u}/SFR > 3.9 x 10^24 W/Hz/(M_sun/yr) and L_X/SFR<10^40 erg/s/(M_sun/yr). The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent EDGES detection. The analysis framework described here provides a foundation for the interpretation of future HERA results.
70 - Anv{z}e Slosar 2016
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative o f the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.
Heating of neutral gas by energetic sources is crucial for the prediction of the 21 cm signal during the epoch of reionization (EoR). To investigate differences induced on statistics of the 21 cm signal by various source types, we use five radiative transfer simulations which have the same stellar UV emission model and varying combinations of more energetic sources, such as X-ray binaries (XRBs), accreting nuclear black holes (BHs) and hot interstellar medium emission (ISM). We find that the efficient heating from the ISM increases the average global 21~cm signal, while reducing its fluctuations and thus power spectrum. A clear impact is also observed in the bispectrum in terms of scale and timing of the transition between a positive and a negative value. The impact of XRBs is similar to that of the ISM, although it is delayed in time and reduced in intensity because of the less efficient heating. Due to the paucity of nuclear BHs, the behaviour of the 21~cm statistics in their presence is very similar to that of a case when only stars are considered, with the exception of the latest stages of reionization, when the effect of BHs is clearly visible. We find that differences between the source scenarios investigated here are larger than the instrumental noise of SKA1-low at $z gtrsim 7-8$, suggesting that in the future it might be possible to constrain the spectral energy distribution of the sources contributing to the reionization process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا