ﻻ يوجد ملخص باللغة العربية
We investigate the impact of an Ohmic-class environment on the conduction and correlation properties of one-dimensional interacting systems. Interestingly, we reveal that inter-particle interactions can be engineered by the environments noise statistics. Introducing a backscattering impurity to the system, we address Kane-Fishers metal-to-insulator quantum phase transition in this noisy and realistic setting. Within a perturbative renormalization group approach, we show that the Ohmic environments keep the phase transition intact, while sub- and super-Ohmic environments, modify it into a smooth crossover at a scale that depends on the interaction strength within the wire. The system still undergoes a metal-to-insulator-like transition when moving from sub-Ohmic to super-Ohmic environment noise. We cover a broad range of realistic experimental conditions, by exploring the impact of a finite wire length and temperature on transport through the system.
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value.
A novel method for detecting Luttinger-liquid behavior is proposed. The idea is to measure the tunneling conductance between a quantum wire and a parallel two-dimensional electron system as a function of both the potential difference between them, $V
In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge sep
The transport dynamics of a quenched Luttinger liquid tunnel-coupled to a fermionic reservoir is investigated. In the transient dynamics, we show that for a sudden quench of the electron interaction universal power-law decay in time of the tunneling
Transport properties of metallic single-wall nanotubes are examined based on the Luttinger liquid theory. Focusing on a nanotube transistor setup, the linear conductance is computed from the Kubo formula using perturbation theory in the lead-tube tun