ﻻ يوجد ملخص باللغة العربية
We address the problem of human motion tracking by registering a surface to 3-D data. We propose a method that iteratively computes two things: Maximum likelihood estimates for both the kinematic and free-motion parameters of a kinematic human-body representation, as well as probabilities that the data are assigned either to a body part, or to an outlier cluster. We introduce a new metric between observed points and normals on one side, and a parameterized surface on the other side, the latter being defined as a blending over a set of ellipsoids. We claim that this metric is well suited when one deals with either visual-hull or visual-shape observations. We illustrate the method by tracking human motions using sparse visual-shape data (3-D surface points and normals) gathered from imperfect silhouettes.
This letter presents a novel approach to extract reliable dense and long-range motion trajectories of articulated human in a video sequence. Compared with existing approaches that emphasize temporal consistency of each tracked point, we also consider
We propose novel motion representations for animating articulated objects consisting of distinct parts. In a completely unsupervised manner, our method identifies object parts, tracks them in a driving video, and infers their motions by considering t
The goal of photometric stereo is to measure the precise surface normal of a 3D object from observations with various shading cues. However, non-Lambertian surfaces influence the measurement accuracy due to irregular shading cues. Despite deep neural
Human motion prediction aims at generating future frames of human motion based on an observed sequence of skeletons. Recent methods employ the latest hidden states of a recurrent neural network (RNN) to encode the historical skeletons, which can only
The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the objects image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking perfor