ﻻ يوجد ملخص باللغة العربية
The formation of light nuclei can be described as the coalescence of clusters of nucleons into nuclei. In the case of small interacting systems, such as dark matter and $e^+e^-$ annihilations or $pp$ collisions, the coalescence condition is often imposed only in momentum space and hence the size of the interaction region is neglected. On the other hand, in most coalescence models used for heavy ion collisions, the coalescence probability is controlled mainly by the size of the interaction region, while two-nucleon momentum correlations are either neglected or treated as collective flow. Recent experimental data from $pp$ collisions at LHC have been interpreted as evidence for such collective behaviour, even in small interacting systems. We argue that these data are naturally explained in the framework of conventional QCD inspired event generators when both two-nucleon momentum correlations and the size of the hadronic emission volume are taken into account. To include both effects, we employ a per-event coalescence model based on the Wigner function representation of the produced nuclei states. This model reproduces well the source size for baryon emission and the coalescence factor $B_2$ measured recently by the ALICE collaboration in $pp$ collisions.
The data on average hadron multiplicities in central A+A collisions measured at CERN SPS are analysed with the ideal hadron gas model. It is shown that the full chemical equilibrium version of the model fails to describe the experimental results. The
We discuss the longitudinal structure function in nuclear DIS at small $x$. We work within the framework of universal parton densities obtained in DGLAP analyses at NLO. We show that the nuclear effects on the longitudinal structure function closely
We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the Glasma immediately after the collision event at proper time tau = 0. We separately consider the effects of c
A study investigating a possible jet shape dependence on the charged event multiplicity was performed on collision samples generated by Monte-Carlo (MC) event generators PYTHIA and HIJING++. We calculated the integral jet shape and found a significan
We show that for Drell-Yan events by unpolarized hadronic projectiles and nuclear targets, azimuthal asymmetries can arise from the nuclear distortion of the hadronic projectile wave function, typically a spin-orbit effect occurring on the nuclear su