ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualization and Manipulation of Bilayer Graphene Quantum Dots with Broken Rotational Symmetry and Nontrivial Topology

127   0   0.0 ( 0 )
 نشر من قبل Jairo Velasco Jr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrostatically defined quantum dots (QDs) in Bernal stacked bilayer graphene (BLG) are a promising quantum information platform because of their long spin decoherence times, high sample quality, and tunability. Importantly, the shape of QD states determines the electron energy spectrum, the interactions between electrons, and the coupling of electrons to their environment, all of which are relevant for quantum information processing. Despite its importance, the shape of BLG QD states remains experimentally unexamined. Here we report direct visualization of BLG QD states by using a scanning tunneling microscope. Strikingly, we find these states exhibit a robust broken rotational symmetry. By using a numerical tight-binding model, we determine that the observed broken rotational symmetry can be attributed to low energy anisotropic bands. We then compare confined holes and electrons and demonstrate the influence of BLGs nontrivial band topology. Our study distinguishes BLG QDs from prior QD platforms with trivial band topology.



قيم البحث

اقرأ أيضاً

The discovery of correlated electronic phases, including Mott-like insulators and superconductivity, in twisted bilayer graphene (TBLG) near the magic angle, and the intriguing similarity of their phenomenology to that of the high-temperature superco nductors, has spurred a surge of research to uncover the underlying physical mechanism. Local spectroscopy, which is capable of accessing the symmetry and spatial distribution of the spectral function, can provide essential clues towards unraveling this puzzle. Here we use scanning tunneling microscopy (STM) and spectroscopy (STS) in magic angle TBLG to visualize the local density of states (DOS) and charge distribution. Doping the sample to partially fill the flat band, where low temperature transport measurements revealed the emergence of correlated electronic phases, we find a pseudogap phase accompanied by a global stripe charge-order whose similarity to high-temperature superconductors provides new evidence of a deeper link underlying the phenomenology of these systems.
170 - J. Velasco Jr. , L. Jing , W. Bao 2011
The flat bands in bilayer graphene(BLG) are sensitive to electric fields Ebot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5 ]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, when the electron-density is at the carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in bilayer graphene are analogous[17,18] to the masses generated by broken symmetries in particle physics and give rise to large momentum-space Berry curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though recent experiments[20-23] have provided convincing evidence of strong electronic correlations near the CNP in BLG, the presence of gaps is difficult to establish because of the lack of direct spectroscopic measurements. Here we present transport measurements in ultra-clean double-gated BLG, using source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the CNP. The gap can be closed by an electric field Ebot sim13 mV/nm but increases monotonically with a magnetic field B, with an apparent particle-hole asymmetry above the gap, thus providing the first mapping of the ground states in BLG.
Graphene p-n junctions provide an ideal platform for investigating novel behavior at the boundary between electronics and optics that arise from massless Dirac fermions, such as whispering gallery modes and Veselago lensing. Bilayer graphene also hos ts Dirac fermions, but they differ from single-layer graphene charge carriers because they are massive, can be gapped by an applied perpendicular electric field, and have very different pseudospin selection rules across a p-n junction. Novel phenomena predicted for these massive Dirac fermions at p-n junctions include anti-Klein tunneling, oscillatory Zener tunneling, and electron cloaked states. Despite these predictions there has been little experimental focus on the microscopic spatial behavior of massive Dirac fermions in the presence of p-n junctions. Here we report the experimental manipulation and characterization of massive Dirac fermions within bilayer graphene quantum dots defined by circular p-n junctions through the use of scanning tunneling microscopy-based (STM) methods. Our p-n junctions are created via a flexible technique that enables realization of exposed quantum dots in bilayer graphene/hBN heterostructures. These quantum dots exhibit sharp spectroscopic resonances that disperse in energy as a function of applied gate voltage. Spatial maps of these features show prominent concentric rings with diameters that can be tuned by an electrostatic gate. This behavior is explained by single-electron charging of localized states that arise from the quantum confinement of massive Dirac fermions within our exposed bilayer graphene quantum dots.
Measuring degeneracy and broken-symmetry states of a system at nanoscale requires extremely high energy and spatial resolution, which has so far eluded direct observation. Here, we realize measurement of the degeneracy and subtle broken-symmetry stat es of graphene at nanoscale for the first time. By using edge-free graphene quantum dots, we are able to measure valley splitting and valley-contrasting spin splitting of graphene at the single-electron level. Our experiments detect large valley splitting around atomic defects of graphene due to the coexistence of sublattice symmetry breaking and time reversal symmetry breaking. Large valley-contrasting spin splitting induced by enhanced spin-orbit coupling around the defects is also observed. These results reveal unexplored exotic electronic states in graphene at nanoscale induced by the atomic defects.
Berry phase plays an important role in determining many physical properties of quantum systems. However, a Berry phase altering energy spectrum of a quantum system is comparatively rare. Here, we report an unusual tunable valley polarized energy spec tra induced by continuously tunable Berry phase in Bernal-stacked bilayer graphene quantum dots. In our experiment, the Berry phase of electron orbital states is continuously tuned from about pi to 2pi by perpendicular magnetic fields. When the Berry phase equals pi or 2pi, the electron states in the two inequivalent valleys are energetically degenerate. By altering the Berry phase to noninteger multiples of pi, large and continuously tunable valley polarized energy spectra are detected in our experiment. The observed Berry phase-induced valley splitting, on the order of 10 meV at a magnetic field of 1 T, is about 100 times larger than Zeeman splitting for spin, shedding light on graphene-based valleytronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا