ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear deformation as a source of the non-linearity of King plot in the Yb$^+$ ion

207   0   0.0 ( 0 )
 نشر من قبل Vladimir Dzuba
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform atomic relativistic many-body calculations of the field isotope shifts and calculations of corresponding nuclear parameters for all stable even-even isotopes of Yb$^+$ ion. We demonstrate that if we take nuclear parameters of the Yb isotopes from a range of the state-the-art nuclear models which all predict strong quadrupole nuclear deformation, then calculated non-linearity of the King plot, caused by the difference in the deformation in different isotopes, is consistent with the non-linearity observed in the experiment (Ian Counts {em et al}, Phys. Rev. Lett. {bf 125}, 123002 (2020)). The changes of nuclear RMS radius between isotopes extracted from experiment are consistent with those obtained in the nuclear calculations.

قيم البحث

اقرأ أيضاً

Hyperfine structure (HFS) of atomic energy levels arises due to interactions of atomic electrons with a hierarchy of nuclear multipole moments, including magnetic dipole, electric quadrupole and higher rank moments. Recently, a determination of the m agnetic octupole moment of the $^{173}mathrm{Yb}$ nucleus was reported from HFS measurements in neutral ${}^{173}mathrm{Yb}$ [PRA 87, 012512 (2013)], and is four orders of magnitude larger than the nuclear theory prediction. Considering this substantial discrepancy between the spectroscopically extracted value and nuclear theory, here we propose to use an alternative system to resolve this tension, a singly charged ion of the same $^{173}mathrm{Yb}$ isotope. Utilizing the substantial suite of tools developed around $mathrm{Yb}^+$ for quantum information applications, we propose to extract nuclear octupole and hexadecapole moments from measuring hyperfine splittings in the extremely long lived first excited state ($4f^{13}(^2!F^{o})6s^2$, $J=7/2$) of $^{173}mathrm{Yb}^+$. We present results of atomic structure calculations in support of the proposed measurements.
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and n eutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective field theory interactions and the quasi-particle random-phase approximation. However, our results also provide the first indication of the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting further a rapid transition from spherical to deformed ground states with $^{78}$Ni as turning point.
92 - B. K. Sahoo , T. Aoki , B. P. Das 2015
Employing the relativistic coupled-cluster method, comparative studies of the parity non-conserving electric dipole amplitudes for the $7s ^2S_{1/2} rightarrow 6d ^2D_{5/2}$ transitions in $^{210}$Fr and $^{211}$Fr isotopes have been carried out. I t is found that these transition amplitudes, sensitive only to the nuclear spin dependent effects, are enhanced by more than 3 orders compared to the low-lying $S-D_{5/2}$ transitions in Ba$^+$ and Ra$^+$ owing to the very large contributions from the electron core-polarization effects in Fr. This translates to a relatively large and, in principle, measurable induced light shift, which would be a signature of nuclear spin dependent parity nonconservation that is dominated by the nuclear anapole moment in a heavy atom like Fr. A plausible scheme to measure this quantity using the Cyclotron and Radioisotope Center (CYRIC) facility at Tohoku University has been outlined.
We investigate a solid-state, reversible, alkali-ion battery (AIB) capable of regulating the density of alkali atoms in a vacuum system used for the production of laser-cooled atoms. The cold-atom sample can be used with in-vacuum chronoamperometry a s a diagnostic for the voltage-controlled electrochemical reaction that sources or sinks alkali atoms into the vapor. In a combined reaction-diffusion-limited regime, we show that the number of laser-cooled atoms in a magneto-optical trap can be increased both by initially loading the AIB from the vapor for longer, and by using higher voltages across the AIB when atoms are subsequently sourced back into the vapor. The time constants associated with the change in atom number in response to a change in AIB voltage are in the range of 0.5 s - 40 s. The AIB alkali reservoir is demonstrated to survive oxidization during atmospheric exposure, simplifying reservoir loading prior to vacuum implementation as a replacement for traditional resistively-heated dispensers. The AIB capabilities may provide an improved atom number stability in next-generation atomic clocks and sensors, while also facilitating fast loading and increased interrogation times.
284 - Qinghai Huo , Guangbin Ren 2021
In an octonionic Hilbert space $H$, the octonionic linearity is taken to fail for the maps induced by the octonionic inner products, and it should be replaced with the octonionic para-linearity. However, to introduce the notion of the octonionic para -linearity we encounter an insurmountable obstacle. That is, the axiom $$leftlangle pu ,urightrangle=pleftlangle u ,urightrangle$$ for any octonion $p$ and element $uin H$ introduced by Goldstine and Horwitz in 1964 can not be interpreted as a property to be obeyed by the octonionic para-linear maps. In this article, we solve this critical problem by showing that this axiom is in fact non-independent from others. This enables us to initiate the study of octonionic para-linear maps. We can thus establish the octonionic Riesz representation theorem which, up to isomorphism, identifies two octonionic Hilbert spaces with one being the dual of the other. The dual space consists of continuous left almost linear functionals and it becomes a right $O$-module under the multiplication defined in terms of the second associators which measures the failure of $O$-linearity. This right multiplication has an alternative expression $${(fodot p)(x)}=pf(p^{-1}x)p,$$ which is a generalized Moufang identity. Remarkably, the multiplication is compatible with the canonical norm, i.e., $$fsh{fodot p}=fsh{f}abs{p}.$$ Our final conclusion is that para-linearity is the nonassociative counterpart of linearity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا