ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved galactic superwinds reconstructed around their host galaxies at z>3

93   0   0.0 ( 0 )
 نشر من قبل Mandy C. Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a detailed analysis of two giant Lyman-alpha (Lya) arcs detected near known galaxies at z=3.038 and z=3.754 lensed by the massive cluster MACS 1206 (z=0.44). The Lya nebulae revealed in deep MUSE observations exhibit a double-peak profile with a dominant red peak that indicates expansion/outflowing motions. One of the arcs stretches over 1 around the Einstein radius of the cluster, resolving the velocity field of the line-emitting gas on kpc scales around a group of three star-forming galaxies of 0.3-1.6L* at z=3.038. The second arc spans 15 in size, roughly centered around a pair of low-mass Lya emitters of ~0.03L* at z=3.754. All three galaxies in the z=3.038 group exhibit prominent damped Lya absorption (DLA) and several metal absorption lines, in addition to nebular emission lines such as HeII1640 and CIII]1906,1908. Extended Lya emission appears to emerge from star-forming regions to larger distances with suppressed surface brightness at the center of each galaxy, suggesting the presence of dusty outflowing cones of size 1-5 kpc across. There are significant spatial variations in the Lya line profile, consistent with the presence of a steep negative velocity gradient in a continuous flow of high column density gas from star-forming regions into a low-density halo environment. While the observed UV nebular line ratios show no evidence of AGN activity in the galaxies, the observed Lya signals can be explained by a combination of resonant scattering and recombination radiation due to photoionization by ionizing photons escaping from the nearby star-forming regions. These observations provide the most detailed insights yet into the kinematics of galactic superwinds associated with star-forming galaxies thought to be responsible for the chemical enrichment in the intergalactic medium.

قيم البحث

اقرأ أيضاً

During five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signalling in- and outflowing gas winds with relative velocities up to several thousands of km/sec. In particular the location of these winds - close to the quasar, further out in its host galaxy, or in its direct environment - and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback which we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.
We use stellar population synthesis modeling to analyze the host galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z ~ 2 - 3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host galaxy properties. We compare AGN host galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and SFRs than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star-formation activity in star-forming galaxies at z ~ 2 - 3. We suggest that a correlation between M_BH and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.
Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_ {2}O$(202 $-$ 111) ($ u_{rest}$ = 987.927 GHz) is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGN) over many orders-of-magnitude in FIR luminosity (L$_{rm FIR}$). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially ($sim$0.5 arcsec corresponding to $sim$1 kiloparsec) and spectrally resolved ($sim$100 kms$^{-1}$) observations of p$-$$rm H_{2}O$(202 $-$ 111) in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). In addition to increasing the sample of luminous ($ > $ $10^{12}$L$_{odot}$) galaxies observed with $rm H_{2}O$, this paper examines the L$_{rm H_{2}O}$/L$_{rm FIR}$ relation on resolved scales for the first time at high-redshift. We find that L$_{rm H_{2}O}$ is correlated with L$_{rm FIR}$ on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average L$_{rm H_{2}O}$/L$_{rm FIR}$ =$2.76^{+2.15}_{-1.21}times10^{-5}$. We find that the scatter in the observed L$_{rm H_{2}O}$/L$_{rm FIR}$ relation does not obviously correlate with the effective temperature of the dust spectral energy distribution (SED) or the molecular gas surface density. This is a first step in developing p$-$$rm H_{2}O$(202 $-$ 111) as a resolved star formation rate (SFR) calibrator.
We present polarisation properties at $1.4,$GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {it Wide-Field Infrared Survey Explorer} data to determine the host g alaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and $1.4,$GHz luminosity of $6times10^{21}<L_{rm 1.4}<7times10^{25},$W Hz$^{-1}$, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a $1.4,$GHz luminosity of $9times10^{23}<L_{rm 1.4}<7times10^{28},$W Hz$^{-1}$, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at $1.4,$GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m$^{-2}$ wide.
We present spatially resolved maps of six individually-detected Lyman alpha haloes (LAHs) as well as a first statistical analysis of the Lyman alpha (Lya) spectral signature in the circum-galactic medium of high-redshift star-forming galaxies using M USE. Our resolved spectroscopic analysis of the LAHs reveals significant intrahalo variations of the Lya line profile. Using a three-dimensional two-component model for the Lya emission, we measure the full width at half maximum (FWHM), the peak velocity shift and the asymmetry of the Lya line in the core and in the halo of 19 galaxies. We find that the Lya line shape is statistically different in the halo compared to the core for ~40% of our galaxies. Similarly to object-by-object based studies and a recent resolved study using lensing, we find a correlation between the peak velocity shift and the width of the Lya line both at the interstellar and circum-galactic scales. While there is a lack of correlation between the spectral properties and the spatial scale lengths of our LAHs, we find a correlation between the width of the line in the LAH and the halo flux fraction. Interestingly, UV bright galaxies show broader, more redshifted and less asymmetric Lya lines in their haloes. The most significant correlation found is for the FWHM of the line and the UV continuum slope of the galaxy, suggesting that the redder galaxies have broader Lya lines. The generally broad and red line shapes found in the halo component suggests that the Lya haloes are powered either by scattering processes through an outflowing medium, fluorescent emission from outflowing cold clumps of gas, or a mix of both. Considering the large diversity of the Lya line profiles observed in our sample and the lack of strong correlation, the interpretation of our results is still broadly open and underlines the need for realistic spatially resolved models of the LAHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا