ﻻ يوجد ملخص باللغة العربية
We present an analysis of the high-mass eclipsing binary system VV Ori based on photometry from the TESS satellite. The primary star (B1V, 9.5 Msun) shows beta Cephei pulsations and the secondary (B7V, 3.8 Msun) is possibly a slowly-pulsating B star. We detect 51 significant oscillation frequencies, including two multiplets with separations equal to the orbital frequency, indicating that the pulsations are tidally perturbed. We analyse the TESS light curve and published radial velocities to determine the physical properties of the system. Both stars are only the second of their pulsation type with a precisely-measured mass. The orbital inclination is also currently decreasing, likely due to gravitational interactions with a third body.
General relativity predicts that short orbital period binaries emit significant gravitational radiation, and the upcoming Laser Interferometer Space Antenna (LISA) is expected to detect tens of thousands of such systems; however, few have been identi
Pulsating stars in eclipsing binary systems are powerful tools to test stellar models. Binarity enables to constrain the pulsating component physical parameters, whose knowledge drastically improves the input physics for asteroseismic studies. The st
The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary status of the components, and ii) to study the effects of tidal f
Only for very few beta Cephei stars has the behaviour of the magnetic field been studied over the rotation cycle. During the past two years we have obtained multi-epoch polarimetric spectra of the beta Cephei star V1449 Aql with SOFIN at the Nordic O
Eclipsing binary systems with pulsating components allow the determination of several physical parameters of the stars, such as mass and radius, that, when combined with the pulsation properties, can be used to constrain the modeling of stellar inter