ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrally multimode integrated SU(1,1) interferometer

85   0   0.0 ( 0 )
 نشر من قبل Alessandro Ferreri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonlinear SU(1,1) interferometers are fruitful and promising tools for spectral engineering and precise measurements with phase sensitivity below the classical bound. Such interferometers have been successfully realized in bulk and fiber-based configurations. However, rapidly developing integrated technologies provide higher efficiencies, smaller footprints, and pave the way to quantum-enhanced on-chip interferometry. In this work, we theoretically realised an integrated architecture of the multimode SU(1,1) interferometer which can be applied to various integrated platforms. The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump. Based on the potassium titanyl phosphate (KTP) platform, we show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit. In addition, we discuss the fundamental difference between single-mode and highly multimode SU(1,1) interferometers in the properties of phase sensitivity and its limits. Finally, we explore how to improve the phase sensitivity by filtering the output radiation and using different seeding states in different modes with various detection strategies.



قيم البحث

اقرأ أيضاً

115 - Wei Du , Jia Kong , Jun Jia 2020
The use of squeezing and entanglement allows advanced interferometers to detect signals that would otherwise be buried in quantum mechanical noise. High sensitivity instruments including magnetometers and gravitational wave detectors have shown enhan ced signal-to-noise ratio (SNR) by injecting single-mode squeezed light into SU(2) interferometers, e.g. the Mach-Zehnder or Michelson topologies. The quantum enhancement in this approach is sensitive to losses, which break the fragile quantum correlations in the squeezed state. In contrast, SU(1,1) interferometers achieve quantum enhancement by noiseless amplification; they noiselessly increase the signal rather than reducing the quantum noise. Prior work on SU(1,1) interferometers has shown quantum-enhanced SNR11 and insensitivity to losses but to date has been limited to low powers and thus low SNR. Here we introduce a new interferometer topology, the SU(2)-in-SU(1,1) nested interferometer, that combines quantum enhancement, the high SNR possible with a SU(2) interferometer, and the loss tolerance of the SU(1,1) approach. We implement this interferometer using four-wave mixing in a hot atomic vapor and demonstrate 2:2(5) dB of quantum SNR enhancement, in a system with a phase variance nearly two orders of magnitude below that of any previous loss-tolerant enhancement scheme. The new interferometer enables new possibilities such as beyond-shot-noise sensing with wavelengths for which efficient detectors are not available.
The quantum correlation of light and atomic collective excitation can be used to compose an SU(1,1)-type hybrid light-atom interferometer, where one arm in optical SU(1,1) interferometer is replaced by the atomic collective excitation. The phase-sens ing probes include not only the photon field but also the atomic collective excitation inside the interferometer. For a coherent squeezed state as the phase-sensing field, the phase sensitivity can approach the Heisenberg limit under the optimal conditions. We also study the effects of the loss of light field and the dephasing of atomic excitation on the phase sensitivity. Since nonlinear processes are involved in this interferometer, they can couple a variety of different waves and form new types of hybrid interferometers, which provides a new method for basic measurement using the hybrid interferometers.
The quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be ob tained with the Mach-Zehnder interferometer and coherent input state. Recently, it has been shown that the stochastic standard quantum limit can be surpassed with non-classical resources such as the squeezed light. However, practical methods to achieve the quantum enhancement in the stochastic phase estimation remains largely unexplored. Here we propose a method utilizing the SU(1,1) interferometer and coherent input states to estimate a stochastic optical phase. As an example, we investigate the Ornstein-Uhlenback stochastic phase. We analyze the performance of this method for three key estimation problems: prediction, tracking and smoothing. The results show significant reduction of the mean square error compared with the Mach-Zehnder interferometer under the same photon number flux inside the interferometers. In particular, we show that the method with the SU(1,1) interferometer can achieve the fundamental quantum scaling, the stochastic Heisenberg scaling, and surpass the precision of the canonical measurement.
We theoretically derive the lower and upper bounds of quantum Fisher information (QFI) of an SU(1,1) interferometer whatever the input state chosen. According to the QFI, the crucial resource for quantum enhancement is shown to be large intramode cor relations indicated by the Mandel $Q$-parameter. For a photon-subtracted squeezed vacuum state with high super-Poissonian statistics in one input port and a coherent state in the other input port, the quantum Cram{e}r-Rao bound of the SU(1,1) interferometer can beat $1/langlehat{N}rangle$ scaling in presence of large fluctuations in the number of photons, with a given fixed input mean number of photons. The definition of the Heisenberg limit (HL) should take into account the amount of fluctuations. The HL considering the number fluctuation effect may be the ultimate phase limit.
122 - Dong Li , Chun-Hua Yuan , Z. Y. Ou 2013
We theoretically study the phase sensitivity of the SU(1,1) interferometer with a coherent light together with a squeezed vacuum input case using the method of homodyne. We find that the homodyne detection has better sensitivity than the intensity de tection under this input case. For a certain intensity of coherent light (squeezed light) input, the relative phase sensitivity is not always better with increasing the squeezed strength (coherent light strength). The phase sensitivity can reach the Heisenberg limit only under a certain moderate parameter interval, which can be realized with current experiment ability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا