ﻻ يوجد ملخص باللغة العربية
The gradient flow bears a close resemblance to the coarse graining, the guiding principle of the renormalization group (RG). In the case of scalar field theory, a precise connection has been made between the gradient flow and the RG flow of the Wilson action in the exact renormalization group (ERG) formalism. By imitating the structure of this connection, we propose an ERG differential equation that preserves manifest gauge invariance in Yang--Mills theory. Our construction in continuum theory can be extended to lattice gauge theory.
The gradient flow exact renormalization group (GFERG) is an exact renormalization group motivated by the Yang--Mills gradient flow and its salient feature is a manifest gauge invariance. We generalize this GFERG, originally formulated for the pure Ya
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cut
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows to describe the effective potential as a function of both scalar field amplitude and
We present analytical results for the Euclidean 2-point correlator of the flavor-singlet vector current evolved by the gradient flow at next-to-leading order ($O(g^2)$) in perturbatively massless QCD-like theories. We show that the evolved 2-point co
Can large distance high energy QCD be described by Reggeon Field Theory as an effective emergent theory? We start to investigate the issue employing functional renormalisation group techniques.