ترغب بنشر مسار تعليمي؟ اضغط هنا

KATRec: Knowledge Aware aTtentive Sequential Recommendations

298   0   0.0 ( 0 )
 نشر من قبل Seyed Danial Mohseni Taheri
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sequential recommendation systems model dynamic preferences of users based on their historical interactions with platforms. Despite recent progress, modeling short-term and long-term behavior of users in such systems is nontrivial and challenging. To address this, we present a solution enhanced by a knowledge graph called KATRec (Knowledge Aware aTtentive sequential Recommendations). KATRec learns the short and long-term interests of users by modeling their sequence of interacted items and leveraging pre-existing side information through a knowledge graph attention network. Our novel knowledge graph-enhanced sequential recommender contains item multi-relations at the entity-level and users dynamic sequences at the item-level. KATRec improves item representation learning by considering higher-order connections and incorporating them in user preference representation while recommending the next item. Experiments on three public datasets show that KATRec outperforms state-of-the-art recommendation models and demonstrates the importance of modeling both temporal and side information to achieve high-quality recommendations.

قيم البحث

اقرأ أيضاً

News articles usually contain knowledge entities such as celebrities or organizations. Important entities in articles carry key messages and help to understand the content in a more direct way. An industrial news recommender system contains various k ey applications, such as personalized recommendation, item-to-item recommendation, news category classification, news popularity prediction and local news detection. We find that incorporating knowledge entities for better document understanding benefits these applications consistently. However, existing document understanding models either represent news articles without considering knowledge entities (e.g., BERT) or rely on a specific type of text encoding model (e.g., DKN) so that the generalization ability and efficiency is compromised. In this paper, we propose KRED, which is a fast and effective model to enhance arbitrary document representation with a knowledge graph. KRED first enriches entities embeddings by attentively aggregating information from their neighborhood in the knowledge graph. Then a context embedding layer is applied to annotate the dynamic context of different entities such as frequency, category and position. Finally, an information distillation layer aggregates the entity embeddings under the guidance of the original document representation and transforms the document vector into a new one. We advocate to optimize the model with a multi-task framework, so that different news recommendation applications can be united and useful information can be shared across different tasks. Experiments on a real-world Microsoft News dataset demonstrate that KRED greatly benefits a variety of news recommendation applications.
Precise user modeling is critical for online personalized recommendation services. Generally, users interests are diverse and are not limited to a single aspect, which is particularly evident when their behaviors are observed for a longer time. For e xample, a user may demonstrate interests in cats/dogs, dancing and food & delights when browsing short videos on Tik Tok; the same user may show interests in real estate and womens wear in her web browsing behaviors. Traditional models tend to encode a users behaviors into a single embedding vector, which do not have enough capacity to effectively capture her diverse interests. This paper proposes a Sequential User Matrix (SUM) to accurately and efficiently capture users diverse interests. SUM models user behavior with a multi-channel network, with each channel representing a different aspect of the users interests. User states in different channels are updated by an emph{erase-and-add} paradigm with interest- and instance-level attention. We further propose a local proximity debuff component and a highway connection component to make the model more robust and accurate. SUM can be maintained and updated incrementally, making it feasible to be deployed for large-scale online serving. We conduct extensive experiments on two datasets. Results demonstrate that SUM consistently outperforms state-of-the-art baselines.
To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in cu rrent KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.
Modern deep neural networks (DNNs) have greatly facilitated the development of sequential recommender systems by achieving state-of-the-art recommendation performance on various sequential recommendation tasks. Given a sequence of interacted items, e xisting DNN-based sequential recommenders commonly embed each item into a unique vector to support subsequent computations of the user interest. However, due to the potentially large number of items, the over-parameterised item embedding matrix of a sequential recommender has become a memory bottleneck for efficient deployment in resource-constrained environments, e.g., smartphones and other edge devices. Furthermore, we observe that the widely-used multi-head self-attention, though being effective in modelling sequential dependencies among items, heavily relies on redundant attention units to fully capture both global and local item-item transition patterns within a sequence. In this paper, we introduce a novel lightweight self-attentive network (LSAN) for sequential recommendation. To aggressively compress the original embedding matrix, LSAN leverages the notion of compositional embeddings, where each item embedding is composed by merging a group of selected base embedding vectors derived from substantially smaller embedding matrices. Meanwhile, to account for the intrinsic dynamics of each item, we further propose a temporal context-aware embedding composition scheme. Besides, we develop an innovative twin-attention network that alleviates the redundancy of the traditional multi-head self-attention while retaining full capacity for capturing long- and short-term (i.e., global and local) item dependencies. Comprehensive experiments demonstrate that LSAN significantly advances the accuracy and memory efficiency of existing sequential recommenders.
Two main challenges in recommender systems are modeling users with heterogeneous taste, and providing explainable recommendations. In this paper, we propose the neural Attentive Multi-Persona Collaborative Filtering (AMP-CF) model as a unified soluti on for both problems. AMP-CF breaks down the user to several latent personas (profiles) that identify and discern the different tastes and inclinations of the user. Then, the revealed personas are used to generate and explain the final recommendation list for the user. AMP-CF models users as an attentive mixture of personas, enabling a dynamic user representation that changes based on the item under consideration. We demonstrate AMP-CF on five collaborative filtering datasets from the domains of movies, music, video games and social networks. As an additional contribution, we propose a novel evaluation scheme for comparing the different items in a recommendation list based on the distance from the underlying distribution of tastes in the users historical items. Experimental results show that AMP-CF is competitive with other state-of-the-art models. Finally, we provide qualitative results to showcase the ability of AMP-CF to explain its recommendations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا