ﻻ يوجد ملخص باللغة العربية
The PandaX project consists of a series of xenon-based experiments that are used to search for dark matter (DM) particles and to study the fundamental properties of neutrinos. The next DM experiment PandaX-4T will be using 4 ton liquid xenon in the sensitive volume, which is nearly a factor of seven larger than that of the previous experiment PandaX-II. Due to the increasing target mass, the sensitivity of searching for both DM and neutrinoless double-beta decay ($0 ubetabeta$) signals in the same detector will be significantly improved. However, the typical energy of interest for $0 ubetabeta$ signals is at the MeV scale, which is much higher than that of most popular DM signals. In the baseline readout scheme of the photomultiplier tubes (PMTs), the dynamic range is very limited. Signals from the majority of PMTs in the top array of the detector are heavily saturated at MeV energies. This deteriorates the $0 ubetabeta$ search sensitivity. In this paper we report a new design of the readout base board of the PMTs for future PandaX DM experiments and present its improved performance on the dynamic range.
Ultra-high-energy ($>$ 100 TeV) gamma-ray detection benefits from the muon detectors (MDs) due to the powerful capability to suppress the cosmic-ray background. More than 1100 8-inch photomultiplier tubes, CR365-02-2 from Beijing Hamamatsu Photon Tec
Waveform digitizers are key readout instruments in particle physics experiments. In this paper, we present a waveform digitizer for the PandaX dark matter experiments. It supports both external-trigger readout and triggerless readout, accommodating t
Future large water Cherenkov and scintillator detectors have been proposed for measurements of long baseline neutrino oscillations, proton decay, supernova and solar neutrinos. To ensure cost-effectiveness and optimize scientific reach, one of the cr
We describe the electronics and data acquisition system used in the first phase of the PandaX experiment -- a 120 kg dual-phase liquid xenon dark matter direct detection experiment in the China Jin-Ping Underground Laboratory. This system utilized 18
In the Daya Bay Reactor Neutrino Experiment 960 20-cm-diameter waterproof photomultiplier tubes are used to instrument three water pools as Cherenkov detectors for detecting cosmic-ray muons. Of these 960 photomultiplier tubes, 341 are recycled from