ﻻ يوجد ملخص باللغة العربية
Few-shot image generation seeks to generate more data of a given domain, with only few available training examples. As it is unreasonable to expect to fully infer the distribution from just a few observations (e.g., emojis), we seek to leverage a large, related source domain as pretraining (e.g., human faces). Thus, we wish to preserve the diversity of the source domain, while adapting to the appearance of the target. We adapt a pretrained model, without introducing any additional parameters, to the few examples of the target domain. Crucially, we regularize the changes of the weights during this adaptation, in order to best preserve the information of the source dataset, while fitting the target. We demonstrate the effectiveness of our algorithm by generating high-quality results of different target domains, including those with extremely few examples (e.g., <10). We also analyze the performance of our method with respect to some important factors, such as the number of examples and the dissimilarity between the source and target domain.
Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from s
We aim to build image generation models that generalize to new domains from few examples. To this end, we first investigate the generalization properties of classic image generators, and discover that autoencoders generalize extremely well to new dom
In this paper, we extend the traditional few-shot learning (FSL) problem to the situation when the source-domain data is not accessible but only high-level information in the form of class prototypes is available. This limited information setup for t
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access
The aim of few-shot learning (FSL) is to learn how to recognize image categories from a small number of training examples. A central challenge is that the available training examples are normally insufficient to determine which visual features are mo