ﻻ يوجد ملخص باللغة العربية
After decades of fundamental research, unconventional superconductivity has recently been demonstrated in rare-earth infinite-layer nickelates. The current view depicts these systems as a new category of superconducting materials, as they appear to be correlated metals with distinct multiband features in their phase diagram. Here, we provide an overview of the state of the art in this rapidly evolving topic.
We develop a phenomenological theory for the family of uranium-based heavy fermion superconductors ($URhGe$, $UCoGe$, and $UTe_2$ ). The theory unifies the understanding of both superconductivity(SC) with a weak magnetic field and reentrant supercond
The nickelate Pr4Ni3O8 features quasi-two-dimensional layers consisting of three stacked square-planar NiO2 planes, in a similar way to the well-known cuprate superconductors. The mixed-valent nature of Ni and its metallic properties makes it a candi
Effective models are constructed for a newly discovered superconductor (Nd,Sr)NiO2, which has been considered as a possible nickelate analogue of the cuprates owing to the d9 electron configuration. Estimation of the effective interaction, which turn
This review introduces known candidates for bulk topological superconductors and categorizes them with time-reversal symmetry (TRS) and gap structures. Recent studies on two archetypal topological superconductors, TRS-broken Sr2RuO4 and TRS-preserved CuxBi2Se3, are described in some detail.
We report a comprehensive study of the centrosymmetric Re$_3$B and noncentrosymmetric Re$_7$B$_3$ superconductors. At a macroscopic level, their bulk superconductivity (SC), with $T_c$ = 5.1 K (Re$_3$B) and 3.3 K (Re$_7$B$_3$), was characterized via