ﻻ يوجد ملخص باللغة العربية
We study the transport properties of low-energy (quasi)particles ballistically traversing normal and Andreev two-dimensional open cavities with a Sinai-billiard shape. We consider four different geometrical setups and focus on the dependence of transport on the strength of an applied magnetic field. By solving the classical equations of motion for each setup we calculate the magnetoconductance in terms of transmission and reflection coefficients for both the normal and Andre
We studied the energy levels of graphene based Andreev billiards consisting of a superconductor region on top of a monolayer graphene sheet. For the case of Andreev retro-reflection we show that the graphene based Andreev billiard can be mapped to th
We investigate statistical aspects of the entanglement production for open chaotic mesoscopic billiards in contact with superconducting parts, known as Andreev billiards. The complete distributions of concurrence and entanglement of formation are obt
We perform a comparative study of the quantum and classical transport probabilities of low-energy quasiparticles ballistically traversing normal and Andreev two-dimensional open cavities with a Sinai-billiard shape. We focus on the dependence of the
We present a classical and quantum mechanical study of an Andreev billiard with a chaotic normal dot. We demonstrate that in general the classical dynamics of these normal-superconductor hybrid systems is mixed, thereby indicating the limitations of
We examine the density of states of an Andreev billiard and show that any billiard with a finite upper cut-off in the path length distribution $P(s)$ will possess an energy gap on the scale of the Thouless energy. An exact quantum mechanical calculat