ﻻ يوجد ملخص باللغة العربية
We investigate inelastic microwave photon scattering by a transmon qubit embedded in a high-impedance circuit. The transmon undergoes a charge-localization (Schmid) transition upon the impedance reaching the critical value. Due to the unique transmon level structure, the fluorescence spectrum carries a signature of the transition point. At higher circuit impedance, quasielastic photon scattering may account for the main part of the inelastic scattering cross-section; we find its dependence on the qubit and circuit parameters.
We investigate magnetoresistance of a square array of superconducting islands placed on a normal metal, which offers a unique tunable laboratory for realizing and exploring quantum many-body systems and their dynamics. A vortex Mott insulator where m
An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propaga
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the system through the avoided energy-level crossing by sweeping the avoided cro
It is well known that the critical temperature of multi-gap superconducting 3D heterostructures at atomic limit (HAL) made of a superlattice of atomic layers with an electron spectrum made of several quantum subbands can be amplified by a shape reson
Superconductivity has been one of the most fascinating quantum states of matter for over several decades. Among the superconducting materials, LaAlO3/SrTiO3 interface is of particularly interest since superconductivity exists between two insulating m