ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia Early Data Release 3: Photometric content and validation

78   0   0.0 ( 0 )
 نشر من قبل Marco Riello
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaia Early Data Release 3 contains astrometry and photometry results for about 1.8 billion sources based on observations collected by the ESA Gaia satellite during the first 34 months of operations. This paper focuses on the photometric content, describing the input data, the algorithms, the processing, and the validation of the results. Particular attention is given to the quality of the data and to a number of features that users may need to take into account to make the best use of the EDR3 catalogue. The treatment of the BP and RP background has been updated to include a better estimation of the local background, and the detection of crowding effects has been used to exclude affected data from the calibrations. The photometric calibration models have also been updated to account for flux loss over the whole magnitude range. Significant improvements in the modelling and calibration of the point and line spread functions have also helped to reduce a number of instrumental effects that were still present in DR2. EDR3 contains 1.806 billion sources with G-band photometry and 1.540 billion sources with BP and RP photometry. The median uncertainty in the G-band photometry, as measured from the standard deviation of the internally calibrated mean photometry for a given source, is 0.2 mmag at magnitude G=10 to 14, 0.8 mmag at G=17, and 2.6 mmag at G=19. The significant magnitude term found in the Gaia DR2 photometry is no longer visible, and overall there are no trends larger than 1 mmag/mag. Using one passband over the whole colour and magnitude range leaves no systematics above the 1% level in magnitude in any of the bands, and a larger systematic is present for a very small sample of bright and blue sources. A detailed description of the residual systematic effects is provided. Overall the quality of the calibrated mean photometry in EDR3 is superior with respect to DR2 for all bands.



قيم البحث

اقرأ أيضاً

Aims. We describe the photometric content of the second data release of the Gaia project (Gaia DR2) and its validation along with the quality of the data. Methods. The validation was mainly carried out using an internal analysis of the photometry. Ex ternal comparisons were also made, but were limited by the precision and systematics that may be present in the external catalogues used. Results. In addition to the photometric quality assessment, we present the best estimates of the three photometric passbands. Various colour-colour transformations are also derived to enable the users to convert between the Gaia and commonly used passbands. Conclusions. The internal analysis of the data shows that the photometric calibrations can reach a precision as low as 2 mmag on individual CCD measurements. Other tests show that systematic effects are present in the data at the 10 mmag level.
The third Gaia data release is published in two stages. The early part, Gaia EDR3, gives very precise astrometric and photometric properties for nearly two billion sources together with seven million radial velocities from Gaia DR2. The full release, Gaia DR3, will add radial velocities, spectra, light curves, and astrophysical parameters for a large subset of the sources, as well as orbits for solar system objects. Before the publication of the catalogue, many different data items have undergone dedicated validation processes. The goal of this paper is to describe the validation results in terms of completeness, accuracy, and precision for the Gaia EDR3 data and to provide recommendations for the use of the catalogue data. The validation processes include a systematic analysis of the catalogue contents to detect anomalies, either individual errors or statistical properties, using statistical analysis and comparisons to the previous release as well as to external data and to models. Gaia EDR3 represents a major step forward, compared to Gaia DR2, in terms of precision, accuracy, and completeness for both astrometry and photometry. We provide recommendations for dealing with issues related to the parallax zero point, negative parallaxes, photometry for faint sources, and the quality indicators.
Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We de scribe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task. The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point. Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 million with five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million. Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than G = 17 mag. The median uncertainty in parallax and annual proper motion is 0.02-0.03 mas at magnitude G = 9 to 14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars.
124 - F. Arenou , X. Luri , C. Babusiaux 2017
Before the publication of the Gaia Catalogue, the contents of the first data release have undergone multiple dedicated validation tests. These tests aim at analysing in-depth the Catalogue content to detect anomalies, individual problems in specific objects or in overall statistical properties, either to filter them before the public release, or to describe the different caveats of the release for an optimal exploitation of the data. Dedicated methods using either Gaia internal data, external catalogues or models have been developed for the validation processes. They are testing normal stars as well as various populations like open or globular clusters, double stars, variable stars, quasars. Properties of coverage, accuracy and precision of the data are provided by the numerous tests presented here and jointly analysed to assess the data release content. This independent validation confirms the quality of the published data, Gaia DR1 being the most precise all-sky astrometric and photometric catalogue to-date. However, several limitations in terms of completeness, astrometric and photometric quality are identified and described. Figures describing the relevant properties of the release are shown and the testing activities carried out validating the user interfaces are also described. A particular emphasis is made on the statistical use of the data in scientific exploitation.
Context. This paper presents an overview of the photometric data that are part of the first Gaia data release. Aims. The principles of the processing and the main characteristics of the Gaia photometric data are presented. Methods. The calibration st rategy is outlined briefly and the main properties of the resulting photometry are presented. Results. Relations with other broadband photometric systems are provided. The overall precision for the Gaia photometry is shown to be at the milli-magnitude level and has a clear potential to improve further in future releases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا