ﻻ يوجد ملخص باللغة العربية
Many proposals have emerged as alternatives to the Heckman selection model, mainly to address the non-robustness of its normal assumption. The 2001 Medical Expenditure Panel Survey data is often used to illustrate this non-robustness of the Heckman model. In this paper, we propose a generalization of the Heckman sample selection model by allowing the sample selection bias and dispersion parameters to depend on covariates. We show that the non-robustness of the Heckman model may be due to the assumption of the constant sample selection bias parameter rather than the normality assumption. Our proposed methodology allows us to understand which covariates are important to explain the sample selection bias phenomenon rather than to only form conclusions about its presence. We explore the inferential aspects of the maximum likelihood estimators (MLEs) for our proposed generalized Heckman model. More specifically, we show that this model satisfies some regularity conditions such that it ensures consistency and asymptotic normality of the MLEs. Proper score residuals for sample selection models are provided, and model adequacy is addressed. Simulated results are presented to check the finite-sample behavior of the estimators and to verify the consequences of not considering varying sample selection bias and dispersion parameters. We show that the normal assumption for analyzing medical expenditure data is suitable and that the conclusions drawn using our approach are coherent with findings from prior literature. Moreover, we identify which covariates are relevant to explain the presence of sample selection bias in this important dataset.
Recently, a so-called E-MS algorithm was developed for model selection in the presence of missing data. Specifically, it performs the Expectation step (E step) and Model Selection step (MS step) alternately to find the minimum point of the observed g
The validity of conclusions from meta-analysis is potentially threatened by publication bias. Most existing procedures for correcting publication bias assume normality of the study-specific effects that account for between-study heterogeneity. Howeve
In meta-analyses, publication bias is a well-known, important and challenging issue because the validity of the results from a meta-analysis is threatened if the sample of studies retrieved for review is biased. One popular method to deal with public
Gravitational lensing magnification modifies the observed spatial distribution of galaxies and can severely bias cosmological probes of large-scale structure if not accurately modelled. Standard approaches to modelling this magnification bias may not
We give analytic methods for nonparametric bias reduction that remove the need for computationally intensive methods like the bootstrap and the jackknife. We call an estimate {it $p$th order} if its bias has magnitude $n_0^{-p}$ as $n_0 to infty$,