ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed algorithms for fractional coloring

82   0   0.0 ( 0 )
 نشر من قبل Louis Esperet
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, Hirvonen, Rybicki and Suomela (2016) that for every real $alpha>1$ and integer $Delta$, a fractional coloring of total weight at most $alpha(Delta+1)$ can be obtained deterministically in a single round in graphs of maximum degree $Delta$, in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed $epsilon > 0$ and $Delta$, a fractional coloring of total weight at most $Delta+epsilon$ can be found in $O(log^*n)$ rounds in graphs of maximum degree $Delta$ with no $K_{Delta+1}$, while finding a fractional coloring of total weight at most $Delta$ in this case requires $Omega(log log n)$ rounds for randomized algorithms and $Omega( log n)$ rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most $2+epsilon$ in grids of any fixed dimension, for any $epsilon>0$, in $O(log^*n)$ rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most $2+epsilon$, for any $epsilon>0$, in $O(log n)$ rounds.

قيم البحث

اقرأ أيضاً

We show that the $(degree+1)$-list coloring problem can be solved deterministically in $O(D cdot log n cdotlog^2Delta)$ rounds in the CONGEST model, where $D$ is the diameter of the graph, $n$ the number of nodes, and $Delta$ the maximum degree. Usin g the recent polylogarithmic-time deterministic network decomposition algorithm by Rozhov{n} and Ghaffari [STOC 2020], this implies the first efficient (i.e., $polylog n$-time) deterministic CONGEST algorithm for the $(Delta+1)$-coloring and the $(mathit{degree}+1)$-list coloring problem. Previously the best known algorithm required $2^{O(sqrt{log n})}$ rounds and was not based on network decompositions. Our techniques also lead to deterministic $(mathit{degree}+1)$-list coloring algorithms for the congested clique and the massively parallel computation (MPC) model. For the congested clique, we obtain an algorithm with time complexity $O(logDeltacdotloglogDelta)$, for the MPC model, we obtain algorithms with round complexity $O(log^2Delta)$ for the linear-memory regime and $O(log^2Delta + log n)$ for the sublinear memory regime.
The problem of coloring the edges of an $n$-node graph of maximum degree $Delta$ with $2Delta - 1$ colors is one of the key symmetry breaking problems in the area of distributed graph algorithms. While there has been a lot of progress towards the und erstanding of this problem, the dependency of the running time on $Delta$ has been a long-standing open question. Very recently, Kuhn [SODA 20] showed that the problem can be solved in time $2^{O(sqrt{logDelta})}+O(log^* n)$. In this paper, we study the edge coloring problem in the distributed LOCAL model. We show that the $(mathit{degree}+1)$-list edge coloring problem, and thus also the $(2Delta-1)$-edge coloring problem, can be solved deterministically in time $log^{O(loglogDelta)}Delta + O(log^* n)$. This is a significant improvement over the result of Kuhn [SODA 20].
We present $O(loglog n)$ round scalable Massively Parallel Computation algorithms for maximal independent set and maximal matching, in trees and more generally graphs of bounded arboricity, as well as for constant coloring trees. Following the standa rds, by a scalable MPC algorithm, we mean that these algorithms can work on machines that have capacity/memory as small as $n^{delta}$ for any positive constant $delta<1$. Our results improve over the $O(log^2log n)$ round algorithms of Behnezhad et al. [PODC19]. Moreover, our matching algorithm is presumably optimal as its bound matches an $Omega(loglog n)$ conditional lower bound of Ghaffari, Kuhn, and Uitto [FOCS19].
Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph $G$ with at most $(3+epsilon)omega(G)+6$ colors, for any constant $epsilon>0$, where $omega(G)$ is the clique number of $G$. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph $G$ with at most $5.68omega(G)$ colors in $O(2^{sqrt{log log n}})$ rounds. Moreover, when $omega(G)=O(1)$, the algorithm runs in $O(log^* n)$ rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph $G$ has average degree at most $4omega(G)$, which would imply the existence of a $O(log n)$ round algorithm coloring any unit-disk graph $G$ with (approximatively) $4omega(G)$ colors.
While algebrisation constitutes a powerful technique in the design and analysis of centralised algorithms, to date there have been hardly any applications of algebraic techniques in the context of distributed graph algorithms. This work is a case stu dy that demonstrates the potential of algebrisation in the distributed context. We will focus on distributed graph algorithms in the congested clique model; the graph problems that we will consider include, e.g., the triangle detection problem and the all-pairs shortest path problem (APSP). There is plenty of prior work on combinatorial algorithms in the congested clique model: for example, Dolev et al. (DISC 2012) gave an algorithm for triangle detection with a running time of $tilde O(n^{1/3})$, and Nanongkai (STOC 2014) gave an approximation algorithm for APSP with a running time of $tilde O(n^{1/2})$. In this work, we will use algebraic techniques -- in particular, algorithms based on fast matrix multiplication -- to solve both triangle detection and the unweighted APSP in time $O(n^{0.15715})$; for weighted APSP, we give a $(1+o(1))$-approximation with this running time, as well as an exact $tilde O(n^{1/3})$ solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا