ترغب بنشر مسار تعليمي؟ اضغط هنا

Satellite Quantum Communications: Fundamental Bounds and Practical Security

90   0   0.0 ( 0 )
 نشر من قبل Stefano Pirandola
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stefano Pirandola




اسأل ChatGPT حول البحث

Satellite quantum communications are emerging within the panorama of quantum technologies as a more effective strategy to distribute completely-secure keys at very long distances, therefore playing an important role in the architecture of a large-scale quantum network. In this work, we apply and extend recent results in free-space quantum communications to determine the ultimate limits at which secret (and entanglement) bits can be distributed via satellites. Our study is comprehensive of the various practical scenarios, encompassing both downlink and uplink configurations, with satellites at different altitudes and zenith angles. It includes effects of diffraction, extinction, background noise and fading, due to pointing errors and atmospheric turbulence (appropriately developed for slant distances). Besides identifying upper bounds, we also discuss lower bounds, i.e., achievable rates for key generation and entanglement distribution. In particular, we study the composable finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution, for both downlink and uplink, showing the feasibility of this approach for all configurations. Finally, we present a study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain of ideal quantum repeaters.

قيم البحث

اقرأ أيضاً

In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive opt ical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.
118 - Stefano Pirandola 2020
The study of free-space quantum communications requires tools from quantum information theory, optics and turbulence theory. Here we combine these tools to bound the ultimate rates for key and entanglement distribution through a free-space link, wher e the propagation of quantum systems is generally affected by diffraction, atmospheric extinction, turbulence, pointing errors, and background noise. Besides establishing ultimate limits, we also show that the composable secret-key rate achievable by a suitable (pilot-guided and post-selected) coherent-state protocol is sufficiently close to these limits, therefore showing the suitability of free-space channels for high-rate quantum key distribution. Our work provides analytical tools for assessing the composable finite-size security of coherent-state protocols in general conditions, from the standard assumption of a stable communication channel (as is typical in fiber-based connections) to the more challenging scenario of a fading channel (as is typical in free-space links).
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdroppers power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).
A practical quantum key distribution (QKD) protocol necessarily runs in finite time and, hence, only a finite amount of communication is exchanged. This is in contrast to most of the standard results on the security of QKD, which only hold in the lim it where the number of transmitted signals approaches infinity. Here, we analyze the security of QKD under the realistic assumption that the amount of communication is finite. At the level of the general formalism, we present new results that help simplifying the actual implementation of QKD protocols: in particular, we show that symmetrization steps, which are required by certain security proofs (e.g., proofs based on de Finettis representation theorem), can be omitted in practical implementations. Also, we demonstrate how two-way reconciliation protocols can be taken into account in the security analysis. At the level of numerical estimates, we present the bounds with finite resources for ``device-independent security against collective attacks.
The photonic Temporal Mode (TM) represents a possible candidate for the delivery of viable multidimensional quantum communications. However, relative to other multidimensional quantum information carriers such as the Orbital Angular Momentum (OAM), t he TM has received less attention. Moreover, in the context of the emerging quantum internet and satellite-based quantum communications, the TM has received no attention. In this work, we remedy this situation by considering the traversal through the satellite-to-Earth channel of single photons encoded in TM space. Our results indicate that for anticipated atmospheric conditions the photonic TM offers a promising avenue for the delivery of high-throughput quantum communications from a satellite to a terrestrial receiver. In particular, we show how these modes can provide for improved multiplexing performance and superior quantum key distribution in the satellite-to-Earth channel, relative to OAM single-photon states. The levels of TM discrimination that guarantee this outcome are outlined and implications of our results for the emerging satellite-based quantum internet are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا