ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Defending Multiple Adversarial Perturbations via Gated Batch Normalization

92   0   0.0 ( 0 )
 نشر من قبل Aishan Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There is now extensive evidence demonstrating that deep neural networks are vulnerable to adversarial examples, motivating the development of defenses against adversarial attacks. However, existing adversarial defenses typically improve model robustness against individual specific perturbation types. Some recent methods improve model robustness against adversarial attacks in multiple $ell_p$ balls, but their performance against each perturbation type is still far from satisfactory. To better understand this phenomenon, we propose the emph{multi-domain} hypothesis, stating that different types of adversarial perturbations are drawn from different domains. Guided by the multi-domain hypothesis, we propose emph{Gated Batch Normalization (GBN)}, a novel building block for deep neural networks that improves robustness against multiple perturbation types. GBN consists of a gated sub-network and a multi-branch batch normalization (BN) layer, where the gated sub-network separates different perturbation types, and each BN branch is in charge of a single perturbation type and learns domain-specific statistics for input transformation. Then, features from different branches are aligned as domain-invariant representations for the subsequent layers. We perform extensive evaluations of our approach on MNIST, CIFAR-10, and Tiny-ImageNet, and demonstrate that GBN outperforms previous defense proposals against multiple perturbation types, i.e, $ell_1$, $ell_2$, and $ell_{infty}$ perturbations, by large margins of 10-20%.

قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) are vulnerable to adversarial noise. Their adversarial robustness can be improved by exploiting adversarial examples. However, given the continuously evolving attacks, models trained on seen types of adversarial examples g enerally cannot generalize well to unseen types of adversarial examples. To solve this problem, in this paper, we propose to remove adversarial noise by learning generalizable invariant features across attacks which maintain semantic classification information. Specifically, we introduce an adversarial feature learning mechanism to disentangle invariant features from adversarial noise. A normalization term has been proposed in the encoded space of the attack-invariant features to address the bias issue between the seen and unseen types of attacks. Empirical evaluations demonstrate that our method could provide better protection in comparison to previous state-of-the-art approaches, especially against unseen types of attacks and adaptive attacks.
This paper presents a DNN bottleneck reinforcement scheme to alleviate the vulnerability of Deep Neural Networks (DNN) against adversarial attacks. Typical DNN classifiers encode the input image into a compressed latent representation more suitable f or inference. This information bottleneck makes a trade-off between the image-specific structure and class-specific information in an image. By reinforcing the former while maintaining the latter, any redundant information, be it adversarial or not, should be removed from the latent representation. Hence, this paper proposes to jointly train an auto-encoder (AE) sharing the same encoding weights with the visual classifier. In order to reinforce the information bottleneck, we introduce the multi-scale low-pass objective and multi-scale high-frequency communication for better frequency steering in the network. Unlike existing approaches, our scheme is the first reforming defense per se which keeps the classifier structure untouched without appending any pre-processing head and is trained with clean images only. Extensive experiments on MNIST, CIFAR-10 and ImageNet demonstrate the strong defense of our method against various adversarial attacks.
We present Sandwich Batch Normalization (SaBN), an embarrassingly easy improvement of Batch Normalization (BN) with only a few lines of code changes. SaBN is motivated by addressing the inherent feature distribution heterogeneity that one can be iden tified in many tasks, which can arise from data heterogeneity (multiple input domains) or model heterogeneity (dynamic architectures, model conditioning, etc.). Our SaBN factorizes the BN affine layer into one shared sandwich affine layer, cascaded by several parallel independent affine layers. Concrete analysis reveals that, during optimization, SaBN promotes balanced gradient norms while still preserving diverse gradient directions: a property that many application tasks seem to favor. We demonstrate the prevailing effectiveness of SaBN as a drop-in replacement in four tasks: $textbf{conditional image generation}$, $textbf{neural architecture search}$ (NAS), $textbf{adversarial training}$, and $textbf{arbitrary style transfer}$. Leveraging SaBN immediately achieves better Inception Score and FID on CIFAR-10 and ImageNet conditional image generation with three state-of-the-art GANs; boosts the performance of a state-of-the-art weight-sharing NAS algorithm significantly on NAS-Bench-201; substantially improves the robust and standard accuracies for adversarial defense; and produces superior arbitrary stylized results. We also provide visualizations and analysis to help understand why SaBN works. Codes are available at https://github.com/VITA-Group/Sandwich-Batch-Normalization.
Batch Normalization (BN) is a popular technique for training Deep Neural Networks (DNNs). BN uses scaling and shifting to normalize activations of mini-batches to accelerate convergence and improve generalization. The recently proposed Iterative Norm alization (IterNorm) method improves these properties by whitening the activations iteratively using Newtons method. However, since Newtons method initializes the whitening matrix independently at each training step, no information is shared between consecutive steps. In this work, instead of exact computation of whitening matrix at each time step, we estimate it gradually during training in an online fashion, using our proposed Stochastic Whitening Batch Normalization (SWBN) algorithm. We show that while SWBN improves the convergence rate and generalization of DNNs, its computational overhead is less than that of IterNorm. Due to the high efficiency of the proposed method, it can be easily employed in most DNN architectures with a large number of layers. We provide comprehensive experiments and comparisons between BN, IterNorm, and SWBN layers to demonstrate the effectiveness of the proposed technique in conventional (many-shot) image classification and few-shot classification tasks.
As an indispensable component, Batch Normalization (BN) has successfully improved the training of deep neural networks (DNNs) with mini-batches, by normalizing the distribution of the internal representation for each hidden layer. However, the effect iveness of BN would diminish with scenario of micro-batch (e.g., less than 10 samples in a mini-batch), since the estimated statistics in a mini-batch are not reliable with insufficient samples. In this paper, we present a novel normalization method, called Batch Kalman Normalization (BKN), for improving and accelerating the training of DNNs, particularly under the context of micro-batches. Specifically, unlike the existing solutions treating each hidden layer as an isolated system, BKN treats all the layers in a network as a whole system, and estimates the statistics of a certain layer by considering the distributions of all its preceding layers, mimicking the merits of Kalman Filtering. BKN has two appealing properties. First, it enables more stable training and faster convergence compared to previous works. Second, training DNNs using BKN performs substantially better than those using BN and its variants, especially when very small mini-batches are presented. On the image classification benchmark of ImageNet, using BKN powered networks we improve upon the best-published model-zoo results: reaching 74.0% top-1 val accuracy for InceptionV2. More importantly, using BKN achieves the comparable accuracy with extremely smaller batch size, such as 64 times smaller on CIFAR-10/100 and 8 times smaller on ImageNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا