ﻻ يوجد ملخص باللغة العربية
We investigate unpolarized and polarized gluon distributions and their applications to the Ioffe-time distributions, which are related to lattice QCD calculations of parton distribution functions. Guided by the counting rules based on the perturbative QCD at large momentum fraction $x$ and the color coherence of gluon couplings at small $x$, we parametrize gluon distributions in the helicity basis. By fitting the unpolarized gluon distribution, the inferred polarized gluon distribution from our parametrization agrees with the one from global analysis. A simultaneous fit to both unpolarized and polarized gluon distributions is also performed to explore the model uncertainty. The agreement with the global analysis supports the $(1-x)$ power suppression of the helicity-antialigned distribution relative to the helicity-aligned distribution. The corresponding Ioffe-time distributions and their asymptotic expansions are calculated from the gluon distributions. Our results of the Ioffe-time distributions can provide guidance to the extrapolation of lattice QCD data to the region lacking precise gluonic matrix elements. Therefore, they can help regulate the ill-posed inverse problem associated with extracting the gluon distributions from discrete data from first-principle calculations, which are available in a limited range of the nucleon momentum and the spatial separation between the gluonic currents. Given various limitations in obtaining lattice QCD data at large Ioffe time, phenomenological approaches can provide important complementary information to extract the gluon distributions in the entire $x$ region. The possibility of investigating higher-twist effects and other systematic uncertainties in the contemporary first-principle calculations of parton distributions from phenomenologically well-determined Ioffe-time distributions in the large Ioffe-time region is also discussed.
We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe time pseudo-distributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2+1 flavor QCD ensembles u
We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We identify the two-gluon correlator functions that contain the invariant amplitude determ
We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-gluon correlator functions and identify those tha
We discuss the structure of the parton quasi-distributions (quasi-PDFs) $Q(y, P_3)$ outside the canonical $-1 leq y leq 1$ support region of the usual parton distribution functions (PDFs). Writing the $y^n$ moments of $Q(y, P_3)$ in terms of the comb
We show that quasi-PDFs may be treated as hybrids of PDFs and primordial rest-frame momentum distributions of partons. This results in a complicated convolution nature of quasi-PDFs that necessitates using large $p_3 sim 3$ GeV momenta to get reasona