ﻻ يوجد ملخص باللغة العربية
The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma to construct high-rate locally-decodable codes. However, the algorithmic results about these codes crucially rely on the fact that the polynomials are evaluated on a vector space and not an arbitrary product set. In this work, we show how to decode multivariate multiplicity codes of large multiplicities in polynomial time over finite product sets (over fields of large characteristic and zero characteristic). Previously such decoding algorithms were not known even for a positive fraction of errors. In contrast, our work goes all the way to the distance of the code and in particular exceeds both the unique decoding bound and the Johnson bound. For errors exceeding the Johnson bound, even combinatorial list-decodablity of these codes was not known. Our algorithm is an application of the classical polynomial method directly to the multivariate setting. In particular, we do not rely on a reduction from the multivariate to the univariate case as is typical of many of the existing results on decoding codes based on multivariate polynomials. However, a vanilla application of the polynomial method in the multivariate setting does not yield a polynomial upper bound on the list size. We obtain a polynomial bound on the list size by taking an alternative view of multivariate multiplicity codes. In this view, we glue all the partial derivatives of the same order together using a fresh set $z$ of variables. We then apply the polynomial method by viewing this as a problem over the field $mathbb{F}(z)$ of rational functions in $z$.
We give a polynomial time algorithm to decode multivariate polynomial codes of degree $d$ up to half their minimum distance, when the evaluation points are an arbitrary product set $S^m$, for every $d < |S|$. Previously known algorithms can achieve t
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The propose
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabili
We introduce successive cancellation (SC) decoding of product codes (PCs) with single parity-check (SPC) component codes. Recursive formulas are derived, which resemble the SC decoding algorithm of polar codes. We analyze the error probability of SPC
Product codes (PCs) and staircase codes (SCCs) are conventionally decoded based on bounded distance decoding (BDD) of the component codes and iterating between row and column decoders. The performance of iterative BDD (iBDD) can be improved using sof