ترغب بنشر مسار تعليمي؟ اضغط هنا

Refined Ephemeris for Four Hot Jupiters using Ground-Based and TESS Observations

106   0   0.0 ( 0 )
 نشر من قبل Atila Poro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

WASP-12 b, WASP-33 b, WASP-36 b, and WASP-46 b are four transiting planetary systems which we have studied. These systems light curves were derived from observations made by the Transiting Light Exoplanet Survey Satellite (TESS) and some ground-based telescopes. We used Exofast-v1 to model these light curves and calculate mid-transit times. Also, we plotted TTV diagrams for them using derived mid-transit times and those available within the literature. O-C analysis of these timings enables us to refine the linear ephemeris of four systems. We measured WASP-12s tidal quality factor based on adding TESS data as Q*=(2.13+-0.29)*10^5. According to the analysis, the orbital period of the WASP-46 b system is increasing. The WASP-36 b and WASP-33 b systems have not shown any obvious quadratic trend in their TTV diagrams. The increase in their period is most likely due to inaccurate liner ephemeris that has increased over time. So, more observations are needed to evaluate whether or not there is an orbital decay in the WASP-36 b and WASP-33 b systems.



قيم البحث

اقرأ أيضاً

We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS): TOI 564 b and TOI 905 b. The transits of these two planets were initially observed by TESS with orbital periods of 1.651 d and 3.739 d, respectively. We conducted follow-up observations of each system from the ground, including photometry in multiple filters, speckle interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical hot Jupiter with a mass of $1.463^{+0.10}_{-0.096} M_J$ and a radius of $1.02^{+0.71}_{-0.29} R_J$. TOI 905 b is a classical hot Jupiter as well, with a mass of $0.667^{+0.042}_{-0.041} M_J$ and radius of $1.171^{+0.053}_{-0.051} R_J$. Both planets orbit Sun-like, moderately bright, mid-G dwarf stars with V ~ 11. While TOI 905 b fully transits its star, we found that TOI 564 b has a very high transit impact parameter of $0.994^{+0.083}_{-0.049}$, making it one of only ~20 known systems to exhibit a grazing transit and one of the brightest host stars among them. TOI 564 b is therefore one of the most attractive systems to search for additional non-transiting, smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and transit duration over the time scale of several years.
We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V=11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 Mjup planet in a grazing transit configuration with an impact parameter of b = 1.17 +0.10/-0.08. As a result the radius is poorly constrained, 2.03 +0.61/-0.49 Rjup. The planets distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Qs = 10^7 - 10^9. We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/- 0.13 Mjup and a radius of 1.29 +/- 0.02 Rjup. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V=12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V=12.4 G-type star. It has a mass of 0.79 +/- 0.06 Mjup and a radius of 1.09 +0.08/-0.05 Rjup. Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe/H] ranging from 0.18 - 0.24.
66 - F. Davoudi , A. Poro , E. Paki 2020
In this research, 14 light curves of 10 hot Jupiter exoplanets available on Exoplanet Transit Database (ETD) were analyzed. We extracted the transit parameters using EXOFAST software. Finally, we compared the planets radius parameter calculated by th e EXOFAST with the value at the NASA Exoplanet Archive (NEA) using the confidence interval method. According to the results obtained from this comparison, there is an acceptable match for the planets radius with NEA values. Also, based on the average value of 350 mm optics in this study, it shows that the results obtained using small telescopes can be very significant if there is appropriate observational skill to study more discovered planets.
We present a new analysis of the light curve of the young planet-hosting star TOI 451 in the light of new observations from TESS Cycle 3. Our joint analysis of the transits of all three planets, using all available TESS data, results in an improved e phemeris for TOI 451 b and TOI 451 c, which will help to plan follow-up observations. The updated mid-transit times are $textrm{BJD}-2,457,000=$ $1410.9896_{ - 0.0029 }^{ + 0.0032 }$, $1411.7982_{-0.0020}^{+0.0022}$, and $1416.63407_{-0.00100}^{+0.00096}$ for TOI 451 b, c, and d, respectively, and the periods are $1.8587028_{-10e-06}^{+08e-06}$, $9.192453_{-3.3e-05}^{+4.1e-05}$, and $16.364932_{-3.5e-05}^{+3.6e-05 }$ days. We also model the out-of-transit light curve using a Gaussian Process with a quasi-periodic kernel and infer a change in the properties of the active regions on the surface of TOI 451 between TESS Cycles 1 and 3.
We use ground-based and space-based eclipse measurements for the near-infrared ($JHK!s$) bands and Spitzer 3.6 $mu$m and 4.5 $mu$m bands to construct colour-colour and colour-magnitude diagrams for hot Jupiters. We compare the results with previous o bservations of substellar objects and find that hot Jupiters, when corrected for their inflated radii, lie near the black body line and in the same region of the colour magnitude diagrams as brown dwarfs, including low gravity dwarfs that have been previously suggested as exoplanet analogs. We use theoretical emission spectra to investigate the effects of different metallicity, C/O ratios and temperatures on the IR colours. In general we find that while differences in C/O ratio and metallicity do correspond to different locations on these diagrams, the measurement errors are too large to use this method to put strong constraints on the composition of individual objects. However, as a class hot Jupiters cluster around the location expected for solar metallicity and C/O ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا