ترغب بنشر مسار تعليمي؟ اضغط هنا

Populations of super-soft X-ray sources in galaxies of different morphological types

98   0   0.0 ( 0 )
 نشر من قبل Ilkham Galiullin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study populations of soft and super-soft X-ray sources in nearby galaxies of various morphological types with the special emphasis on characterizing populations of stable nuclear burning accreting WDs. Analysing the content of Chandra archive we assembled a sample of nearby galaxies suitable for studying populations of super-soft X-ray sources. Our sample includes 4 spiral galaxies, 2 lenticular galaxies and 3 ellipticals with stellar mass exceeding $10^{10}$ $M_odot$ and X-ray sensitivity of the order of a ${rm few}times 10^{36}$ erg/s. We used combination of hardness ratio and median energy to pre-select X-ray sources with soft spectra, and temperature - X-ray luminosity diagram to identify super-soft X-ray sources - likely nuclear burning accreting white dwarfs. For spiral galaxies, there is a distinct and rare population of super-soft sources, largely detached from the rest of sources on the $kT_{bb}-L_X$ plane. The boundary between these sources and the much more numerous population of harder (but still soft) sources is consistent with the boundary of stable hydrogen burning on the white dwarf surface. Combined spectrum of soft sources located outside this boundary, shows clear emission lines of Mg and S, which equivalent width is similar to that in the combined spectrum of a large number of confirmed supernova remnants in M83. This confirms earlier suggestions that the vast majority of so called quasi-soft sources are supernova remnants. In early-type galaxies, populations of super-soft sources are about a factor of $approx 8$ less abundant, in broad agreement with the population synthesis calculations. Specific frequencies of super-soft sources are: (2.08$pm$0.46)$times10^{-10}$ M$_{odot}^{-1}$ in spiral galaxies and (2.47$pm$1.34)$times10^{-11}$ M$_{odot}^{-1}$ in lenticular and elliptical galaxies, with the ratio of the latter to the former of $0.12pm0.05$.



قيم البحث

اقرأ أيضاً

107 - F. Calura 2008
We study interstellar dust evolution in various environments by means of chemical evolution models for galaxies of different morphological types. We start from the formalism developed by Dwek (1998) to study dust evolution in the solar neighbourhood and extend it to ellipticals and dwarf irregular galaxies, showing how the evolution of the dust production rates and of the dust fractions depend on the galactic star formation history. The observed dust fractions observed in the solar neighbourhood can be reproduced by assuming that dust destruction depends the condensation temperatures T_c of the elements. In elliptical galaxies, type Ia SNe are the major dust factories in the last 10 Gyr. With our models, we successfully reproduce the dust masses observed in local ellipticals (~10^6 M_sun) by means of recent FIR and SCUBA observations. We show that dust is helpful in solving the iron discrepancy observed in the hot gaseous halos surrounding local ellipticals. In dwarf irregulars, we show how a precise determination of the dust depletion pattern could be useful to put solid constraints on the dust condensation efficiencies. Our results will be helpful to study the spectral properties of dust grains in local and distant galaxies.
75 - Lin He , Song Wang , Xiaojie Xu 2019
X-ray emission is an important indicator of stellar activity. In this paper, we study stellar X-ray activity using the XMM-Newton and LAMOST data for different types of stars. We provide a sample including 1259 X-ray emitting stars, of which 1090 hav e accurate stellar parameter estimations. Our sample size is much larger than those in previous works. We find a bimodal distribution of X-ray to optical flux ratio (log(fX/fV)) for G and K stars. We interpret that this bimodality is due to two subpopulations with different coronal heating rates. Furthermore, using the full widths at half maxima calculated from H{alpha} and Hb{eta} lines, we show that these stars in the inactive peaks have smaller rotational velocities. This is consistent with the magnetic dynamo theory that stars with low rotational velocities have low levels of stellar activity. We also examine the correlation between log(fX/fV) and luminosity of the excess emission in the H{alpha} line, and find a tight relation between the coronal and chromospheric activity indicators.
113 - Marita Krause 2008
From our radio continuum and polarization observations of a sample of spiral galaxies with different morphological types, inclinations, and star formation rates (SFR) we found that galaxies with low SFR have higher thermal fractions/ smaller synchrot ron fractions than those with normal or high SFR. Adopting an equipartition model, we concluded from our observations that the nonthermal radio emission and the total magnetic field strength grow nonlinearly with SFR. We also studied the magnetic field structure and disk thicknesses in highly inclined (edge-on) galaxies. We found in five galaxies that - despite their different radio appearance - the vertical scale heights for both, the thin and thick disk/halo, are about equal (0.3/1.8kpc), independently of their different SFR. They also show a similar large-scale magnetic field configuration, parallel to the midplane and X-shaped further away from the disk plane, independent of Hubble type and SFR in the disk. Hence we conclude that the amplification and formation of the large-scale magnetic field structure is independent of SFR.
We present a detailed, broadband X-ray spectral analysis of the ULX pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the $XMM$-$Newton$, $NuSTAR$ and $Chandra$ observatories. The broadband $XMM$-$Newton+NuSTAR$ spectrum of P13 is qualitatively similar to the rest of the ULX sample with broadband coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures $sim$0.5 and $sim$1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be similar, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron stars magnetic field soon after its onset, implying a limit of $B lesssim 6 times 10^{12}$ G for the dipolar component of the central neutron stars magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual off states. These data require both a hard powerlaw component, suggesting residual accretion onto the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.
Half a year after its outburst, the nova V4743 Sgr evolved into the brightest super-soft X-ray source in the sky with a flux maximum around 30A, exhibiting resonance lines of C V, C VI, N VI, N VII, and O VII. We present preliminary results of an ana lysis of the XMM-Newton RGS spectra by means of NLTE model-atmosphere techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا