ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurrent galactic cosmic-ray flux modulation in L1 and geomagnetic activity during the declining phase of the solar cycle 24

129   0   0.0 ( 0 )
 نشر من قبل Michele Fabi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic cosmic-ray (GCR) flux short-term variations ($<$1 month) in the inner heliosphere are mainly associated with the passage of high-speed solar wind streams (HSS) and interplanetary (IP) counterparts of coronal mass ejections (ICMEs). Data gathered with a particle detector flown on board the ESA LISA Pathfinder (LPF) spacecraft, during the declining part of the solar cycle 24 (February 2016 - July 2017) around the Lagrange point L1, have allowed to study the characteristics of recurrent cosmic-ray flux modulations above 70 MeV n$^{-1}$. %These modulations are observed when the solar wind speed is $>$ 400 km s$^{-1}$ and/or the IP magnetic field intensity $>$ 10 nT. It is shown that the amplitude and evolution of individual modulations depend in a unique way on both IP plasma parameters and particle flux intensity before HSS and ICMEs transit. By comparing the LPF data with those gathered contemporaneously with the magnetic spectrometer experiment AMS-02 on board the International Space Station and with those of Earth polar neutron monitors, the GCR flux modulation was studied at different energies during recurrent short-term variations. It is also aimed to set the near real-time particle observation requirements to disentangle the role of long and short-term variations of the GCR flux to evaluate the performance of high-sensitivity instruments in space such as the future interferometers for gravitational wave detection. Finally, the association between recurrent GCR flux variation observations in L1 and weak to moderate geomagnetic activity in 2016-2017 is discussed. Short-term recurrent GCR flux variations are good proxies of recurrent geomagnetic activity when the B$_z$ component of the IP magnetic field is directed northern.



قيم البحث

اقرأ أيضاً

We have studied long-term variations of galactic cosmic ray (GCR) intensity in relation to the sunspot number (SSN) during the most recent solar cycles. This study analyses the time-lag between the GCR intensity and SSN, and hysteresis plots of the G CR count rate against SSN for solar activity cycles 20-23 to validate a methodology against previous results in the literature, before applying the method to provide a timely update on the behaviour of cycle 24. Cross-plots of SSN vs GCR show a clear difference between the odd-numbered and even-numbered cycles. Linear and elliptical models have been fit to the data with the linear fit and elliptical model proving the more suitable model for even-numbered and odd-numbered solar activity cycles respectively, in agreement with previous literature. Through the application of these methods for the 24th solar activity cycle, it has been shown that cycle 24 experienced a lag of 2-4 months and follows the trend of the preceding activity cycles albeit with a slightly longer lag than previous even-numbered cycles. It has been shown through the hysteresis analysis that the linear fit is a better representative model for cycle 24, as the ellipse model doesnt show a significant improvement, which is also in agreement with previous even-numbered cycles.
60 - E. Richard , K. Okumura , K. Abe 2015
A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${ u}_e+{ba r{ u}}_e$ and ${ u}_{mu}+{bar{ u}}_{mu}$ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the ${ u}_e$ and ${ u}_{mu}$ samples at 8.0 {sigma} and 6.0 {sigma} significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 {sigma} level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is also performed, and a weak indication of a correlation was seen at the 1.1 {sigma} level, using SK I-IV data spanning a 20 year period. For particularly strong solar activity periods known as Forbush decreases, no theoretical prediction is available, but a deviation below the typical neutrino event rate is seen at the 2.4 {sigma} level.
The geomagnetic field causes not only the East-West effect on the primary cosmic rays but also affects the trajectories of the secondary charged particles in the shower, causing their lateral distribution to be stretched along certain directions. Thu s both the density of the secondaries near the shower axis and the trigger efficiency of a detector array decrease. The effect depends on the age and on the direction of the showers, thus involving the measured azimuthal distribution. Here the non-uniformity of the azimuthal distribution of the reconstructed events in the ARGO-YBJ experiment is deeply investigated for different zenith angles on the light of this effect. The influence of the geomagnetic field as well as geometric effects are studied by means of a Monte Carlo simulation.
432 - M. Armano , H. Audley , J. Baird 2018
Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder ( LPF), meant for subsystems diagnostics, was devoted to the measurement of galactic cosmic-ray and solar energetic particle integral fluxes above 70 MeV n$^{-1}$ up to 6500 counts s$^{-1}$. PD data were gathered with a sampling time of 15 s. Characteristics and energy-dependence of GCR flux recurrent depressions and of a Forbush decrease dated August 2, 2016 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections (ICMEs) is also discussed.
After a prolong and deep solar minimum at the end of solar cycle 23, the current cycle 24 is one of the lowest cycles. The two periods of deep minimum and mini-maximum of the cycle 24 are connected by a period of increasing solar activity. In this wo rk, the Forbush decreases of cosmic ray intensity during the period from January 2008 to December 2014 are studied. A statistical analysis of 749 events using the IZMIRAN database of Forbush effects obtained by processing the data of the worldwide neutron monitor network using the global survey method is performed. A further study of the events that happened on the Sun and affected the interplanetary space, and finally provoked the decreases of the galactic cosmic rays near Earth is performed. A statistical analysis of the amplitude of the cosmic ray decreases with solar and geomagnetic parameters is carried out. The results will be useful for space weather studies and especially for Forbush decreases forecasting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا