ترغب بنشر مسار تعليمي؟ اضغط هنا

A KMOS survey of the nuclear disk of the Milky Way I: Survey design and metallicities

62   0   0.0 ( 0 )
 نشر من قبل Tobias Fritz K.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the central few degrees of the bulge of the Milky Way there is a flattened structure of gas, dust and stars (the central molecular zone) similar to nuclear disks in other galaxies. Due to extreme foreground extinction we possess only sparse information about the (mostly old) stellar population of the nuclear disc. Here we present our KMOS spectroscopic survey of the stars in the nuclear disk reaching the old populations. In order to obtain an unbiased data set, we sample stars in the full extinction range along each line-of-sight. We also observe reference fields in neighboring regions of the Galactic bulge. Here we describe the design and execution of the survey and present first results. We obtain spectra and five spectral indices of 3113 stars with a median S/N of 67 and measure radial velocities for 3051 stars. Of those, 2735 sources have sufficient S/N to estimate temperatures and metallicities from indices. We derive metallicities using the CO 2-0 and Na I K-band spectral features, where we derive our own empirical calibration using metallicities obtained with higher resolution observations. We use 183 giant stars for calibration spanning in metallicity from -2.5 to 0.6 dex and covering temperatures of up to 5500 K. The derived index based metallicities deviate from the calibration values with a scatter of 0.32 dex. The internal uncertainty of our metallicities is likely smaller. We use these metallicity measurements together with the CO index to derive effective temperatures using literature relations. We publish the catalog here. Our data set complements Galactic surveys such as Gaia and APOGEE for the inner 200 pc radius of the Milky Way which is not readily accessible by those surveys due to extinction. We will use the derived properties in future papers for further analysis of the nuclear disk.

قيم البحث

اقرأ أيضاً

60 - H. Beuther , S. Bihr , M. Rugel 2016
Context: The past decade has witnessed a large number of Galactic plane surveys at angular resolutions below 20. However, no comparable high-resolution survey exists at long radio wavelengths around 21cm in line and continuum emission. Methods: Emplo ying the Very Large Array (VLA) in the C-array configuration and a large program, we observe the HI 21cm line, four OH lines, nineteen Halpha radio recombination lines as well as the continuum emission from 1 to 2GHz in full polarization over a large part of the first Galactic quadrant. Results: Covering Galactic longitudes from 14.5 to 67.4deg and latitudes between +-1.25deg, we image all of these lines and the continuum at ~20 resolution. These data allow us to study the various components of the interstellar medium (ISM): from the atomic phase, traced by the HI line, to the molecular phase, observed by the OH transitions, to the ionized medium, revealed by the cm continuum and the Halpha radio recombination lines. Furthermore, the polarized continuum emission enables magnetic field studies. In this overview paper, we discuss the survey outline and present the first data release as well as early results from the different datasets. We now release the first half of the survey; the second half will follow later after the ongoing data processing has been completed. The data in fits format (continuum images and line data cubes) can be accessed through the project web-page http://www.mpia.de/thor. Conclusions: The HI/OH/Recombination line survey of the Milky Way (THOR) opens a new window to the different parts of the ISM. It enables detailed studies of molecular cloud formation, conversion of atomic to molecular gas, and feedback from HII regions as well as the magnetic field in the Milky Way. It is highly complementary to other surveys of our Galaxy, and comparing different datasets allows us to address many open questions.
The Galactic bulge is a massive, old component of the Milky Way. It is known to host a bar, and it has recently been demonstrated to have a pronounced boxy/peanut structure in its outer region. Several independent studies suggest the presence of more than one stellar populations in the bulge, with different origins and a relative fraction changing across the bulge area. This is the first of a series of papers presenting the results of the Giraffe Inner Bulge Survey, carried out at the ESO-VLT with the multifibre spectrograph FLAMES. Spectra of ~5000 red clump giants in 24 bulge fields have been obtained at resolution R=6500, in the infrared Calcium triplet wavelength region at 8500 {AA}. They are used to derive radial velocities and metallicities, based on new calibration specifically devised for this project. Radial velocities for another ~1200 bulge red clump giants, obtained from similar archive data, have been added to the sample. Higher resolution spectra have been obtained for 450 additional stars at latitude b=-3.5, with the aim of investigating chemical abundance patterns variations with longitude, across the inner bulge. In total we present here radial velocities for 6392 RC stars. We derive a radial velocity, and velocity dispersion map of the Milky Way bulge, useful to be compared with similar maps of external bulges, and to infer the expected velocities and dispersion at any line of sight. The K-type giants kinematics is consistent with the cylindrical rotation pattern of M-giants from the BRAVA survey. Our sample enables to extend this result to latitude b=-2, closer to the Galactic plane than probed by previous surveys. Finally, we find strong evidence for a velocity dispersion peak at (0,-1) and (0,-2), possibly indicative of a high density peak in the central 250 pc of the bulge
Open clusters (OCs) are crucial for studying the formation and evolution of the Galactic disc. However, the lack of a large number of OCs analyzed homogeneously hampers the investigations about chemical patterns and the existence of Galactocentric ra dial and vertical gradients, or an age-metallicity relation. To overcome this, we have designed the Open Cluster Chemical Abundances from Spanish Observatories survey (OCCASO). We aim to provide homogeneous radial velocities, physical parameters and individual chemical abundances of six or more Red Clump stars for a sample of 25 old and intermediate-age OCs visible from the Northern hemisphere. To do so, we use high resolution spectroscopic facilities (R> 62,000) available at Spanish observatories. We present the motivation, design and current status of the survey, together with the first data release of radial velocities for 77 stars in 12 OCs, which represents about 50% of the survey. We include clusters never studied with high-resolution spectroscopy before (NGC~1907, NGC~6991, NGC~7762), and clusters in common with other large spectroscopic surveys like the Gaia-ESO Survey (NGC~6705) and APOGEE (NGC~2682 and NGC~6819). We perform internal comparisons between instruments to evaluate and correct internal systematics of the results, and compare our radial velocities with previous determinations in the literature, when available. Finally, radial velocities for each cluster are used to perform a preliminar kinematic study in relation with the Galactic disc.
The DESI Milky Way Survey (MWS) will observe $ge$8 million stars between $16 < r < 19$ mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and p opulation gradients; characterize diffuse substructure in the thick disk and stellar halo; enable the discovery of extremely metal-poor stars and other rare stellar types; and improve constraints on the Galaxys 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public.
68 - Marla Geha 2017
We present the survey strategy and early results of the Satellites Around Galactic Analogs (SAGA) Survey. The SAGA Surveys goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ($ M_r < -12.3 $). We define a Milky Way analog based on $K$-band luminosity and local environment. Here, we present satellite luminosity functions for 8 Milky Way analog galaxies between 20 to 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to $ r_o < 20.75 $ using low redshift $gri$ color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky Way analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are five Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Ways satellite galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا