ﻻ يوجد ملخص باللغة العربية
We study the Laplacian spectrum of token graphs, also called symmetric powers of graphs. The $k$-token graph $F_k(G)$ of a graph $G$ is the graph whose vertices are the $k$-subsets of vertices from $G$, two of which being adjacent whenever their symmetric difference is a pair of adjacent vertices in $G$. In this paper, we give a relationship between the Laplacian spectra of any two token graphs of a given graph. In particular, we show that, for any integers $h$ and $k$ such that $1le hle kle frac{n}{2}$, the Laplacian spectrum of $F_h(G)$ is contained in the Laplacian spectrum of $F_k(G)$. We also show that the double odd graphs and doubled Johnson graphs can be obtained as token graphs of the complete graph $K_n$ and the star $S_{n}=K_{1,n-1}$, respectively. Besides, we obtain a relationship between the spectra of the $k$-token graph of $G$ and the $k$-token graph of its complement $overline{G}$. This generalizes a well-known property for Laplacian eigenvalues of graphs to token graphs. Finally, the double odd graphs and doubled Johnson graphs provide two infinite families, together with some others, in which the algebraic connectivities of the original graph and its token graph coincide. Moreover, we conjecture that this is the case for any graph $G$ and its token graph.
We study the symmetry properties of the spectra of normalized Laplacians on signed graphs. We find a new machinery that generates symmetric spectra for signed graphs, which includes bipartiteness of unsigned graphs as a special case. Moreover, we pro
In this paper, we use a new and correct method to determine the $n$-vertex $k$-trees with the first three largest signless Laplacian indices.
The emph{simplicial rook graph} SR(d,n) is the graph whose vertices are the lattice points in the $n$th dilate of the standard simplex in $mathbb{R}^d$, with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency
The Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. We find that the class of strongly regular graphs attains the maximum of largest eigenvalues, th
Let $P_n$ and $C_n$ denote the path and cycle on $n$ vertices respectively. The dumbbell graph, denoted by $D_{p,k,q}$, is the graph obtained from two cycles $C_p$, $C_q$ and a path $P_{k+2}$ by identifying each pendant vertex of $P_{k+2}$ with a ver