ﻻ يوجد ملخص باللغة العربية
Steve Gull, in unpublished work available on his Cambridge University homepage, has outlined a proof of Bells theorem using Fourier theory. Gulls philosophy is that Bells theorem can be seen as a no-go theorem for a project in distributed computing (with classical, not quantum, computers!). We present his argument, correcting misprints and filling gaps. In his argument, there were two completely separated computers in the network. We need three in order to fill all the gaps in his proof: a third computer supplies a stream of random numbers to the two computers, which represent the two measurement stations in Bells work. At the end of the day, one can imagine that computer replaced by a cloned, virtual computer, generating the same pseudo-random numbers within each of Alice and Bobs computers. Gulls proof then just needs a third step: writing an expectation as the expectation of a conditional expectation, given the hidden variables.
Historically, Ehrenfests theorem (1927) is the first one which shows that classical physics can emerge from quantum physics as a kind of approximation. We recall the theorem in its original form. Next, we highlight its generalizations to the relativi
According to the Goldstone theorem a scalar theory with a spontaneously broken global symmetry contains strictly massless states. In this letter we identify a loophole in the current-algebra proof of the theorem. Therefore, the question whether in mo
In 1947, M. S. Macphail constructed a series in $ell_{1}$ that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach Space
We show that among sets of finite perimeter balls are the only volume-constrained critical points of the perimeter functional.
We present a proof of Chows theorem using two results of Errett Bishop retated to volumes and limits of analytic varieties. We think this approach suggested a long time ago in the beautiful book by Gabriel Stolzenberg, is very attractive and easier f