ترغب بنشر مسار تعليمي؟ اضغط هنا

Double beta decay results from the CUPID-0 experiment

212   0   0.0 ( 0 )
 نشر من قبل Davide Chiesa
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A convincing observation of neutrino-less double beta decay (0$ u$DBD) relies on the possibility of operating high energy-resolution detectors in background-free conditions. Scintillating cryogenic calorimeters are one of the most promising tools to fulfill the requirements for a next-generation experiment. Several steps have been taken to demonstrate the maturity of this technique, starting from the successful experience of CUPID-0. The CUPID-0 experiment demonstrated the complete rejection of the dominant alpha background measuring the lowest counting rate in the region of interest for this technique. Furthermore, the most stringent limit on the $^{82}$Se 0$ u$DBD was established running 26 ZnSe crystals during two years of continuous detector operation. In this contribution we present the final results of CUPID-0 Phase I including a detailed model of the background, the measurement of the $^{82}$Se 2$ u$DBD half-life and the evidence that this nuclear transition is single state dominated.



قيم البحث

اقرأ أيضاً

The CUPID-Mo experiment is searching for neutrinoless double beta decay in $^{100}$Mo, evaluating the technology of cryogenic scintillating Li$_{2}^{100}$MoO$_4$ detectors for CUPID (CUORE Upgrade with Particle ID). CUPID-Mo detectors feature backgro und suppression using a dual-readout scheme with Li$_{2}$MoO$_4$ crystals complemented by Ge bolometers for light detection. The detection of both heat and scintillation light signals allows the efficient discrimination of $alpha$ from $gamma$&$beta$ events. In this proceedings, we discuss results from the first 2 months of data taking in spring 2019. In addition to an excellent bolometric performance of 6.7$,$keV (FWHM) at 2615$,$keV and an $alpha$ separation of better than 99.9% for all detectors, we report on bulk radiopurity for Th and U. Finally, we interpret the accumulated physics data in terms of a limit of $T_{1/2}^{0 u},> 3times10^{23},$yr for $^{100}$Mo and discuss the sensitivity of CUPID-Mo until the expected end of physics data taking in early 2020.
The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale cryogenic $0 ubetabeta$ experiment. It consists of a 4.2 kg array of 20 enriched Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers to search for the lepton number violating process of $0 ubetabeta$ decay in $^{100}$Mo. With more than one year of operation (2.16 kg$times$yr of physics data), no event in the region of interest and hence no evidence for $0 ubetabeta$ is observed. We report a new limit on the half-life of $0 ubetabeta$ decay in $^{100}$Mo of $T_{1/2} > 1.5 times 10^{24},$yr at 90 % C.I. The limit corresponds to an effective Majorana neutrino mass $langle m_{betabeta} rangle$ $<$ (0.31--0.54)$,$eV, dependent on the nuclear matrix element in the light Majorana neutrino exchange interpretation.
We report the result of the search for neutrinoless double beta decay of $^{82}$Se obtained with CUPID-0, the first large array of scintillating Zn$^{82}$Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 k g yr $^{82}$Se exposure and we set the most stringent lower limit on the onu $^{82}$Se half-life T$^{0 u}_{1/2}>$ 2.4$times mathrm{10}^{24}$ yr (90% credible interval), which corresponds to an effective Majorana neutrino mass m$_{betabeta} <$ (376-770) meV depending on the nuclear matrix element calculations. The heat-light readout provides a powerful tool for the rejection of al particles and allows to suppress the background in the region of interest down to (3.6$^{+1.9}_{-1.4}$)$times$10$^{-3}$ckky, an unprecedented level for this technique.
CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrino-less double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Labora tori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg$times$yr to search for the neutrino-less double beta decay of $^{70}$Zn and for the neutrino-less positron-emitting electron capture of $^{64}$Zn. We found no evidence for these decays and set 90$%$ credible interval limits of ${rm T}_{1/2}^{0 ubetabeta}(^{70}{rm Zn}) > 1.6 times 10^{21}$ yr and ${rm T}_{1/2}^{0 u EC beta+}(^{64}{rm Zn}) > 1.2 times 10^{22}$ yr, surpassing by almost two orders of magnitude the previous experimental results
123 - V. Alenkov , H. W. Bae , J. Beyer 2019
The Advanced Molybdenum-based Rare process Experiment (AMoRE) aims to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{100}$Mo with $sim$100 kg of $^{100}$Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and ligh t readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $^{48}$Ca-depleted calcium and $^{100}$Mo-enriched molybdenum ($^{48textrm{depl}}$Ca$^{100}$MoO$_4$). The simultaneous detection of heat(phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $0 ubetabeta$ search with a 111 kg$cdot$d live exposure of $^{48textrm{depl}}$Ca$^{100}$MoO$_4$ crystals. No evidence for $0 ubetabeta$ decay of $^{100}$Mo is found, and a upper limit is set for the half-life of 0$ ubetabeta$ of $^{100}$Mo of $T^{0 u}_{1/2} > 9.5times10^{22}$ y at 90% C.L.. This limit corresponds to an effective Majorana neutrino mass limit in the range $langle m_{betabeta}ranglele(1.2-2.1)$ eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا