ﻻ يوجد ملخص باللغة العربية
We present the first calculation within lattice QCD of excited light meson resonances with $J^{PC} = 1^{--}$, $2^{--}$ and $3^{--}$. Working with an exact SU(3) flavor symmetry, for the singlet representation of pseudoscalar-vector scattering, we find two $1^{--}$ resonances, a lighter broad state and a heavier narrow state, a broad $2^{--}$ resonance decaying in both $P$- and $F$-waves, and a narrow $3^{--}$ state. We present connections to experimental $omega^star_J, phi^star_J$ resonances decaying into $pi rho$, $Kbar{K}^*$, $eta omega$ and other final states.
We calculate the bag parameters for neutral $B$-meson mixing in and beyond the Standard Model, in full four-flavour lattice QCD for the first time. We work on gluon field configurations that include the effect of $u$, $d$, $s$ and $c$ sea quarks with
We present the first determination of the binding energy of the $H$ dibaryon in the continuum limit of lattice QCD. The calculation is performed at five values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric p
We explore the use of optimized operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson
We summarize our lattice QCD determinations of the pion-pion, pion-kaon and kaon-kaon s-wave scattering lengths at maximal isospin with a particular focus on the extrapolation to the physical point and the usage of next-to-leading order chiral pertur
We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gau