ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Covalent Dimerization after Enediyne Cyclization on Au(111)

80   0   0.0 ( 0 )
 نشر من قبل Dimas G. de Oteyza
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the thermally-induced cyclization of 1,2 - bis(2 - phenylethynyl)benzene on Au(111) using scanning tunneling microscopy and computer simulations. Cyclization of sterically hindered enediynes is known to proceed via two competing mechanisms in solution: a classic C1 - C6 or a C1 - C5 cyclization pathway. On Au(111) we find that the C1 - C5 cyclization is suppressed and that the C1 - C6 cyclization yields a highly strained bicyclic olefin whose surface chemistry was hitherto unknown. The C1 - C6 product self-assembles into discrete non-covalently bound dimers on the surface. The reaction mechanism and driving forces behind non-covalent association are discussed in light of density functional theory calculations.

قيم البحث

اقرأ أيضاً

On a gold surface, supramolecules composed of 4-acetylbiphenyl molecules show structural directionality, reproducibility and robustness to external perturbations. We investigate the assembly of those molecules on the Au(111) surface and analyze how t he observed supramolecular structures are the result of weak long-range dispersive forces stabilizing the 4-acetylbiphenyl molecules together. Metallic adatoms serve as stabilizing agents. Our analysis suggests new ways of creating complex molecular nano-objects that can eventually be used as devices or as seeds for extended hierarchical structures.
We report the molecular beam epitaxial growth, structure, and electronic measurements of single-crystalline LaAuSb films on Al$_2$O$_3$ (0001) substrates. LaAuSb belongs to a broad family of hexagonal $ABC$ intermetallics in which the magnitude and s ign of layer buckling have strong effects on properties, e.g., predicted hyperferroelecticity, polar metallicity, and Weyl and Dirac states. Scanning transmission electron microscopy reveals highly buckled planes of Au-Sb atoms, with strong interlayer Au-Au interactions and a doubling of the unit cell. This buckling is four times larger than the buckling observed in other $ABC$s with similar composition, e.g. LaAuGe and LaPtSb. Photoemission spectroscopy measurements and comparison with theory suggest an electronic driving force for the Au-Au dimerization, since LaAuSb, with a 19-electron count, has one more valence electron per formula unit than most stable $ABC$s. Our results suggest that the electron count, in addition to conventional parameters such as epitaxial strain and chemical pressure, provides a powerful means for tuning the layer buckling in ferroic $ABC$s.
We have studied the surface modifications as well as the surface roughness of the InP(111) surfaces after 1.5 MeV Sb ion implantations. Scanning Probe Microscope (SPM) has been utilized to investigate the ion implanted InP(111) surfaces. We observe t he formation of nanoscale defect structures on the InP surface. The density, height and size of the nanostructures have been investigated here as a function of ion fluence. The rms surface roughness, of the ion implanted InP surfaces, demonstrates two varied behaviors as a function of Sb ion fluence. Initially, the roughness increases with increasing fluence. However, after a critical fluence the roughness decreases with increasing fluence. We have further applied the technique of Raman scattering to investigate the implantation induced modifications and disorder in InP. Raman Scattering results demonstrate that at the critical fluence, where the decrease in surface roughness occurs, InP lattice becomes amorphous.
Part of developing new strategies for fabrications of nanowire structures involves in many cases the aid of metal nanoparticles (NPs). It is highly beneficial if one can define both diameter and position of the initial NPs and make well-defined nanow ire arrays. This sets additional requirement on the NPs with respect to being able to withstand a pre-growth annealing process (i.e. de- oxidation of the III-V semiconductor surface) in an epitaxy system. Recently, it has been demonstrated that Ag may be an alternative to using Au NPs as seeds for particle-seeded nanowire fabrication. This work brings light onto the effect of annealing of Au, Ag and Au-Ag alloy NP arrays in two commonly used epitaxial systems, the Molecular Beam Epitaxy (MBE) and the Metalorganic Vapor Phase Epitaxy (MOVPE). The NP arrays are fabricated with the aid of Electron Beam Lithography on GaAs 100 and 111B wafers and the evolution of the NPs with respect to shape, size and position on the surfaces are studied after annealing using Scanning Electron Microscopy (SEM). We find that while the Au NP arrays are found to be stable when annealed up to 600 $^{circ}$C in a MOVPE system, a diameter and pitch dependent splitting of the particles are seen for annealing in a MBE system. The Ag NP arrays are less stable, with smaller diameters ($leq$ 50 nm) dissolving during annealing in both epitaxial systems. In general, the mobility of the NPs is observed to differ between the two the GaAs 100 and 111B surfaces. While the initial pattern is found be intact on the GaAs 111B surface for a particular annealing process and particle type, the increased mobility of the NP on the 100 may influence the initial pre-defined positions at higher annealing temperatures. The effect of annealing on Au-Ag alloy NP arrays suggests that these NP can withstand necessary annealing conditions for a complete de-oxidation of GaAs surfaces.
We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theor y has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا