ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal Solutions for Panoramic Stitching Given Gravity Prior

110   0   0.0 ( 0 )
 نشر من قبل Daniel Barath
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When capturing panoramas, people tend to align their cameras with the vertical axis, i.e., the direction of gravity. Moreover, modern devices, such as smartphones and tablets, are equipped with an IMU (Inertial Measurement Unit) that can measure the gravity vector accurately. Using this prior, the y-axes of the cameras can be aligned or assumed to be already aligned, reducing their relative orientation to 1-DOF (degree of freedom). Exploiting this assumption, we propose new minimal solutions to panoramic image stitching of images taken by cameras with coinciding optical centers, i.e., undergoing pure rotation. We consider four practical camera configurations, assuming unknown fixed or varying focal length with or without radial distortion. The solvers are tested both on synthetic scenes and on more than 500k real image pairs from the Sun360 dataset and from scenes captured by us using two smartphones equipped with IMUs. It is shown, that they outperform the state-of-the-art both in terms of accuracy and processing time.



قيم البحث

اقرأ أيضاً

Panoramic video is a sort of video recorded at the same point of view to record the full scene. With the development of video surveillance and the requirement for 3D converged video surveillance in smart cities, CPU and GPU are required to possess st rong processing abilities to make panoramic video. The traditional panoramic products depend on post processing, which results in high power consumption, low stability and unsatisfying performance in real time. In order to solve these problems,we propose a real-time panoramic video stitching framework.The framework we propose mainly consists of three algorithms, LORB image feature extraction algorithm, feature point matching algorithm based on LSH and GPU parallel video stitching algorithm based on CUDA.The experiment results show that the algorithm mentioned can improve the performance in the stages of feature extraction of images stitching and matching, the running speed of which is 11 times than that of the traditional ORB algorithm and 639 times than that of the traditional SIFT algorithm. Based on analyzing the GPU resources occupancy rate of each resolution image stitching, we further propose a stream parallel strategy to maximize the utilization of GPU resources. Compared with the L-ORB algorithm, the efficiency of this strategy is improved by 1.6-2.5 times, and it can make full use of GPU resources. The performance of the system accomplished in the paper is 29.2 times than that of the former embedded one, while the power dissipation is reduced to 10W.
Despite the long history of image and video stitching research, existing academic and commercial solutions still produce strong artifacts. In this work, we propose a wide-baseline video stitching algorithm for linear camera arrays that is temporally stable and tolerant to strong parallax. Our key insight is that stitching can be cast as a problem of learning a smooth spatial interpolation between the input videos. To solve this problem, inspired by pushbroom cameras, we introduce a fast pushbroom interpolation layer and propose a novel pushbroom stitching network, which learns a dense flow field to smoothly align the multiple input videos for spatial interpolation. Our approach outperforms the state-of-the-art by a significant margin, as we show with a user study, and has immediate applications in many areas such as virtual reality, immersive telepresence, autonomous driving, and video surveillance.
Recently, parametric mappings have emerged as highly effective surface representations, yielding low reconstruction error. In particular, the latest works represent the target shape as an atlas of multiple mappings, which can closely encode object pa rts. Atlas representations, however, suffer from one major drawback: The individual mappings are not guaranteed to be consistent, which results in holes in the reconstructed shape or in jagged surface areas. We introduce an approach that explicitly encourages global consistency of the local mappings. To this end, we introduce two novel loss terms. The first term exploits the surface normals and requires that they remain locally consistent when estimated within and across the individual mappings. The second term further encourages better spatial configuration of the mappings by minimizing novel stitching error. We show on standard benchmarks that the use of normal consistency requirement outperforms the baselines quantitatively while enforcing better stitching leads to much better visual quality of the reconstructed objects as compared to the state-of-the-art.
Many real-world applications in augmented reality (AR), 3D mapping, and robotics require both fast and accurate estimation of camera poses and scales from multiple images captured by multiple cameras or a single moving camera. Achieving high speed an d maintaining high accuracy in a pose-and-scale estimator are often conflicting goals. To simultaneously achieve both, we exploit a priori knowledge about the solution space. We present gDLS*, a generalized-camera-model pose-and-scale estimator that utilizes rotation and scale priors. gDLS* allows an application to flexibly weigh the contribution of each prior, which is important since priors often come from noisy sensors. Compared to state-of-the-art generalized-pose-and-scale estimators (e.g., gDLS), our experiments on both synthetic and real data consistently demonstrate that gDLS* accelerates the estimation process and improves scale and pose accuracy.
Let $K$ be an algebraically closed field of null characteristic and $p(z)$ a Hilbert polynomial. We look for the minimal Castelnuovo-Mumford regularity $m_{p(z)}$ of closed subschemes of projective spaces over $K$ with Hilbert polynomial $p(z)$. Expe rimental evidences led us to consider the idea that $m_{p(z)}$ could be achieved by schemes having a suitable minimal Hilbert function. We give a constructive proof of this fact. Moreover, we are able to compute the minimal Castelnuovo-Mumford regularity $m_p(z)^{varrho}$ of schemes with Hilbert polynomial $p(z)$ and given regularity $varrho$ of the Hilbert function, and also the minimal Castelnuovo-Mumford regularity $m_u$ of schemes with Hilbert function $u$. These results find applications in the study of Hilbert schemes. They are obtained by means of minimal Hilbert functions and of two new constructive methods which are based on the notion of growth-height-lexicographic Borel set and called ideal graft and extended lifting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا