ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal and algorithmic norm regularization of random matrices

97   0   0.0 ( 0 )
 نشر من قبل Vishesh Jain
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be an $ntimes n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2exp(-Omega(epsilon n))$ in the choice of $A$, finds an $epsilon n times epsilon n$ sub-matrix such that zeroing it out results in $widetilde{A}$ with [|widetilde{A}| = Oleft(sqrt{n/epsilon}right).] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $ntimes n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.

قيم البحث

اقرأ أيضاً

The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergen ce also holds locally in the bulk of the spectrum, down to the optimal scales larger than the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar results hold for the sum of two real symmetric matrices, when one is conjugated by a Haar orthogonal matrix.
179 - Paul Bourgade 2018
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random band matrices and the problem of their Anderson transition. We finally describe a method to obtain delocalization and universality in some sparse regimes, highlighting the role of quantum unique ergodicity.
We give an asymptotic evaluation of the complexity of spherical p-spin spin-glass models via random matrix theory. This study enables us to obtain detailed information about the bottom of the energy landscape, including the absolute minimum (the grou nd state), the other local minima, and describe an interesting layered structure of the low critical values for the Hamiltonians of these models. We also show that our approach allows us to compute the related TAP-complexity and extend the results known in the physics literature. As an independent tool, we prove a LDP for the k-th largest eigenvalue of the GOE, extending the results of Ben Arous, Dembo and Guionnett (2001).
Let $M_n$ be a random $ntimes n$ matrix with i.i.d. $text{Bernoulli}(1/2)$ entries. We show that for fixed $kge 1$, [lim_{nto infty}frac{1}{n}log_2mathbb{P}[text{corank }M_nge k] = -k.]
118 - Elizabeth Meckes 2021
This is a brief survey of classical and recent results about the typical behavior of eigenvalues of large random matrices, written for mathematicians and others who study and use matrices but may not be accustomed to thinking about randomness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا