ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving accuracy of rare words for RNN-Transducer through unigram shallow fusion

150   0   0.0 ( 0 )
 نشر من قبل Yile Gu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end automatic speech recognition (ASR) systems, such as recurrent neural network transducer (RNN-T), have become popular, but rare word remains a challenge. In this paper, we propose a simple, yet effective method called unigram shallow fusion (USF) to improve rare words for RNN-T. In USF, we extract rare words from RNN-T training data based on unigram count, and apply a fixed reward when the word is encountered during decoding. We show that this simple method can improve performance on rare words by 3.7% WER relative without degradation on general test set, and the improvement from USF is additive to any additional language model based rescoring. Then, we show that the same USF does not work on conventional hybrid system. Finally, we reason that USF works by fixing errors in probability estimates of words due to Viterbi search used during decoding with subword-based RNN-T.

قيم البحث

اقرأ أيضاً

158 - Chunxi Liu , Frank Zhang , Duc Le 2020
End-to-end automatic speech recognition (ASR) models with a single neural network have recently demonstrated state-of-the-art results compared to conventional hybrid speech recognizers. Specifically, recurrent neural network transducer (RNN-T) has sh own competitive ASR performance on various benchmarks. In this work, we examine ways in which RNN-T can achieve better ASR accuracy via performing auxiliary tasks. We propose (i) using the same auxiliary task as primary RNN-T ASR task, and (ii) performing context-dependent graphemic state prediction as in conventional hybrid modeling. In transcribing social media videos with varying training data size, we first evaluate the streaming ASR performance on three languages: Romanian, Turkish and German. We find that both proposed methods provide consistent improvements. Next, we observe that both auxiliary tasks demonstrate efficacy in learning deep transformer encoders for RNN-T criterion, thus achieving competitive results - 2.0%/4.2% WER on LibriSpeech test-clean/other - as compared to prior top performing models.
We investigate a set of techniques for RNN Transducers (RNN-Ts) that were instrumental in lowering the word error rate on three different tasks (Switchboard 300 hours, conversational Spanish 780 hours and conversational Italian 900 hours). The techni ques pertain to architectural changes, speaker adaptation, language model fusion, model combination and general training recipe. First, we introduce a novel multiplicative integration of the encoder and prediction network vectors in the joint network (as opposed to additive). Second, we discuss the applicability of i-vector speaker adaptation to RNN-Ts in conjunction with data perturbation. Third, we explore the effectiveness of the recently proposed density ratio language model fusion for these tasks. Last but not least, we describe the other components of our training recipe and their effect on recognition performance. We report a 5.9% and 12.5% word error rate on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and a 12.7% WER on the Mozilla CommonVoice Italian test set.
128 - Janne Pylkkonen 2021
Adaption of end-to-end speech recognition systems to new tasks is known to be challenging. A number of solutions have been proposed which apply external language models with various fusion methods, possibly with a combination of two-pass decoding. Al so TTS systems have been used to generate adaptation data for the end-to-end models. In this paper we show that RNN-transducer models can be effectively adapted to new domains using only small amounts of textual data. By taking advantage of models inherent structure, where the prediction network is interpreted as a language model, we can apply fast adaptation to the model. Adapting the model avoids the need for complicated decoding time fusions and external language models. Using appropriate regularization, the prediction network can be adapted to new domains while still retaining good generalization capabilities. We show with multiple ASR evaluation tasks how this method can provide relative gains of 10-45% in target task WER. We also share insights how RNN-transducer prediction network performs as a language model.
139 - Duc Le , Gil Keren , Julian Chan 2020
End-to-end models in general, and Recurrent Neural Network Transducer (RNN-T) in particular, have gained significant traction in the automatic speech recognition community in the last few years due to their simplicity, compactness, and excellent perf ormance on generic transcription tasks. However, these models are more challenging to personalize compared to traditional hybrid systems due to the lack of external language models and difficulties in recognizing rare long-tail words, specifically entity names. In this work, we present novel techniques to improve RNN-Ts ability to model rare WordPieces, infuse extra information into the encoder, enable the use of alternative graphemic pronunciations, and perform deep fusion with personalized language models for more robust biasing. We show that these combined techniques result in 15.4%-34.5% relative Word Error Rate improvement compared to a strong RNN-T baseline which uses shallow fusion and text-to-speech augmentation. Our work helps push the boundary of RNN-T personalization and close the gap with hybrid systems on use cases where biasing and entity recognition are crucial.
Knowledge Distillation is an effective method of transferring knowledge from a large model to a smaller model. Distillation can be viewed as a type of model compression, and has played an important role for on-device ASR applications. In this paper, we develop a distillation method for RNN-Transducer (RNN-T) models, a popular end-to-end neural network architecture for streaming speech recognition. Our proposed distillation loss is simple and efficient, and uses only the y and blank posterior probabilities from the RNN-T output probability lattice. We study the effectiveness of the proposed approach in improving the accuracy of sparse RNN-T models obtained by gradually pruning a larger uncompressed model, which also serves as the teacher during distillation. With distillation of 60% and 90% sparse multi-domain RNN-T models, we obtain WER reductions of 4.3% and 12.1% respectively, on a noisy FarField eval set. We also present results of experiments on LibriSpeech, where the introduction of the distillation loss yields a 4.8% relative WER reduction on the test-other dataset for a small Conformer model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا