ترغب بنشر مسار تعليمي؟ اضغط هنا

Nothing But Geometric Constraints: A Model-Free Method for Articulated Object Pose Estimation

294   0   0.0 ( 0 )
 نشر من قبل Qihao Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an unsupervised vision-based system to estimate the joint configurations of the robot arm from a sequence of RGB or RGB-D images without knowing the model a priori, and then adapt it to the task of category-independent articulated object pose estimation. We combine a classical geometric formulation with deep learning and extend the use of epipolar constraint to multi-rigid-body systems to solve this task. Given a video sequence, the optical flow is estimated to get the pixel-wise dense correspondences. After that, the 6D pose is computed by a modified PnP algorithm. The key idea is to leverage the geometric constraints and the constraint between multiple frames. Furthermore, we build a synthetic dataset with different kinds of robots and multi-joint articulated objects for the research of vision-based robot control and robotic vision. We demonstrate the effectiveness of our method on three benchmark datasets and show that our method achieves higher accuracy than the state-of-the-art supervised methods in estimating joint angles of robot arms and articulated objects.



قيم البحث

اقرأ أيضاً

Robots and other smart devices need efficient object-based scene representations from their on-board vision systems to reason about contact, physics and occlusion. Recognized precise object models will play an important role alongside non-parametric reconstructions of unrecognized structures. We present a system which can estimate the accurate poses of multiple known objects in contact and occlusion from real-time, embodied multi-view vision. Our approach makes 3D object pose proposals from single RGB-D views, accumulates pose estimates and non-parametric occupancy information from multiple views as the camera moves, and performs joint optimization to estimate consistent, non-intersecting poses for multiple objects in contact. We verify the accuracy and robustness of our approach experimentally on 2 object datasets: YCB-Video, and our own challenging Cluttered YCB-Video. We demonstrate a real-time robotics application where a robot arm precisely and orderly disassembles complicated piles of objects, using only on-board RGB-D vision.
Estimating the articulated 3D hand-object pose from a single RGB image is a highly ambiguous and challenging problem requiring large-scale datasets that contain diverse hand poses, object poses, and camera viewpoints. Most real-world datasets lack th is diversity. In contrast, synthetic datasets can easily ensure vast diversity, but learning from them is inefficient and suffers from heavy training consumption. To address the above issues, we propose ArtiBoost, a lightweight online data enrichment method that boosts articulated hand-object pose estimation from the data perspective. ArtiBoost is employed along with a real-world source dataset. During training, ArtiBoost alternatively performs data exploration and synthesis. ArtiBoost can cover various hand-object poses and camera viewpoints based on a Compositional hand-object Configuration and Viewpoint space (CCV-space) and can adaptively enrich the current hard-discernable samples by a mining strategy. We apply ArtiBoost on a simple learning baseline network and demonstrate the performance boost on several hand-object benchmarks. As an illustrative example, with ArtiBoost, even a simple baseline network can outperform the previous start-of-the-art based on Transformer on the HO3D dataset. Our code is available at https://github.com/MVIG-SJTU/ArtiBoost.
6D pose estimation from a single RGB image is a fundamental task in computer vision. The current top-performing deep learning-based methods rely on an indirect strategy, i.e., first establishing 2D-3D correspondences between the coordinates in the im age plane and object coordinate system, and then applying a variant of the P$n$P/RANSAC algorithm. However, this two-stage pipeline is not end-to-end trainable, thus is hard to be employed for many tasks requiring differentiable poses. On the other hand, methods based on direct regression are currently inferior to geometry-based methods. In this work, we perform an in-depth investigation on both direct and indirect methods, and propose a simple yet effective Geometry-guided Direct Regression Network (GDR-Net) to learn the 6D pose in an end-to-end manner from dense correspondence-based intermediate geometric representations. Extensive experiments show that our approach remarkably outperforms state-of-the-art methods on LM, LM-O and YCB-V datasets. Code is available at https://git.io/GDR-Net.
Hand-object pose estimation (HOPE) aims to jointly detect the poses of both a hand and of a held object. In this paper, we propose a lightweight model called HOPE-Net which jointly estimates hand and object pose in 2D and 3D in real-time. Our network uses a cascade of two adaptive graph convolutional neural networks, one to estimate 2D coordinates of the hand joints and object corners, followed by another to convert 2D coordinates to 3D. Our experiments show that through end-to-end training of the full network, we achieve better accuracy for both the 2D and 3D coordinate estimation problems. The proposed 2D to 3D graph convolution-based model could be applied to other 3D landmark detection problems, where it is possible to first predict the 2D keypoints and then transform them to 3D.
We study the problem of aligning two sets of 3D geometric primitives given known correspondences. Our first contribution is to show that this primitive alignment framework unifies five perception problems including point cloud registration, primitive (mesh) registration, category-level 3D registration, absolution pose estimation (APE), and category-level APE. Our second contribution is to propose DynAMical Pose estimation (DAMP), the first general and practical algorithm to solve primitive alignment problem by simulating rigid body dynamics arising from virtual springs and damping, where the springs span the shortest distances between corresponding primitives. We evaluate DAMP in simulated and real datasets across all five problems, and demonstrate (i) DAMP always converges to the globally optimal solution in the first three problems with 3D-3D correspondences; (ii) although DAMP sometimes converges to suboptimal solutions in the last two problems with 2D-3D correspondences, using a scheme for escaping local minima, DAMP always succeeds. Our third contribution is to demystify the surprising empirical performance of DAMP and formally prove a global convergence result in the case of point cloud registration by charactering local stability of the equilibrium points of the underlying dynamical system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا