ﻻ يوجد ملخص باللغة العربية
Boundaries in three-dimensional $mathcal{N}=2$ superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining $2d$ boundary algebra exhibits $mathcal{N}=(0,2)$ or $mathcal{N}=(1,1)$ supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For $mathcal{N}=(1,1)$ supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the $epsilon$-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a supersymmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.
We study the constraints of superconformal symmetry on codimension two defects in four-dimensional superconformal field theories. We show that the one-point function of the stress tensor and the two-point function of the displacement operator are rel
We construct superconformal gauged sigma models with extended rigid supersymmetry in three dimensions. Those with N>4 have necessarily flat targets, but the models with N leq 4 admit non-flat targets, which are cones with appropriate Sasakian base ma
N=1, d=4 superconformal group is studied and its representations are discussed. Under superconformal transformations, left invariant derivatives and some class of superfields, including supercurrents, are shown to follow these representations. In oth
We continue the research initiated in hep-th/0607215 and apply our method of conformal automorphisms to generate various N=4 superconformal quantum many-body systems on the real line from a set of decoupled particles extended by fermionic degrees of
We investigate the structure of certain protected operator algebras that arise in three-dimensional N=4 superconformal field theories. We find that these algebras can be understood as a quantization of (either of) the half-BPS chiral ring(s). An impo