ﻻ يوجد ملخص باللغة العربية
Many approaches to galaxy dynamics assume that the gravitational potential is simple and the distribution function is time-invariant. Under these assumptions there are traditional tools for inferring potential parameters given observations of stellar kinematics (e.g., Jeans models). However, spectroscopic surveys measure many stellar properties beyond kinematics. Here we present a new approach for dynamical inference, Orbital Torus Imaging, which makes use of kinematic measurements and element abundances (or other invariant labels). We exploit the fact that, in steady state, stellar labels vary systematically with orbit characteristics (actions), yet must be invariant with respect to orbital phases (conjugate angles). The orbital foliation of phase space must therefore coincide with surfaces along which all moments of all stellar label distributions are constant. Both classical-statistics and Bayesian methods can be built on this; these methods will be more robust and require fewer assumptions than traditional tools because they require no knowledge of the (spatial) survey selection function and they do not involve second moments of velocity distributions. We perform a classical-statistics demonstration with red giant branch stars from the APOGEE surveys: We model the vertical orbit structure in the Milky Way disk to constrain the local disk mass, scale height, and the disk--halo mass ratio (at fixed local circular velocity). We find that the disk mass can be constrained (naively) at the few-percent level with Orbital Torus Imaging using only eight element-abundance ratios, demonstrating the promise of combining stellar labels with dynamical invariants.
This paper explores the integrated-light characteristics of the Milky Way (MW) bulge and to what extent they match those of elliptical galaxies in the local universe. We model composite stellar populations with realistic abundance distribution functi
We present an overview of the distributions of 11 elemental abundances in the Milky Ways inner regions, as traced by APOGEE stars released as part of SDSS Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na, Al, and K. This sa
We use a distribution function analysis to estimate the mass of the Milky Way out to 100 kpc using a large sample of halo stars. These stars are compiled from the literature, and the vast majority (~98%) have 6D phase-space information. We pay partic
The Milky Way is a barred spiral galaxy, with physical properties inferred from various tracers informed by the extrapolation of structures seen in other galaxies. However, the distances of these tracers are measured indirectly and are model-dependen
We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Gal