ﻻ يوجد ملخص باللغة العربية
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulas for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion
It is a longstanding problem in Algebraic Geometry to determine whether the syzygy bundle $E_{d_1,...,d_n}$ on $mathbb{P}^N$ defined as the kernel of a general epimorphism [phi:mathcal{O}(-d_1)oplus...oplusmathcal{O}(-d_n) tomathcal{O}] is (semi)stab
We take another approach to Hitchins strategy of computing the cohomology of moduli spaces of Higgs bundles by localization with respect to the circle-action. Our computation is done in the dimensional completion of the Grothendieck ring of varieties
Let $X$ be a smooth projective curve of genus $g geq 2$ and $M$ be the moduli space of rank 2 stable vector bundles on $X$ whose determinants are isomorphic to a fixed odd degree line bundle $L$. There has been a lot of works studying the moduli and
Let $C$ be an algebraic curve of genus $g$ and $L$ a line bundle over $C$. Let $mathcal{MS}_C(n,L)$ and $mathcal{MO}_C(n,L)$ be the moduli spaces of $L$-valued symplectic and orthogonal bundles respectively, over $C$ of rank $n$. We construct rationa