ﻻ يوجد ملخص باللغة العربية
We give a criterion for modular extension of rank-4 hypermodular matroids, and prove a weakening of Kantors conjecture for rank-4 realizable matroids. This proves the sticky matroid conjecture and Kantors conjecture for realizable matroids due to an argument of Bachem, Kern, and Bonin, and due to an equivalence argument of Hochstattler and Wilhelmi, respectively.
We show Kantors conjecture (1974) holds in rank 4. This proves both the sticky matroid conjecture of Poljak and Turzik (1982) and the whole Kantors conjecture, due to an argument of Bachem, Kern, and Bonin, and an equivalence argument of Hochstattler and Wilhelmi, respectively.
We introduce the notion of real phase structure on rational polyhedral fans in Euclidean space. Such a structure consists of an assignment of affine spaces over $mathbb{Z}/2mathbb{Z}$ to each top dimensional face of the fan subject to two conditions.
We express the matroid polytope $P_M$ of a matroid $M$ as a signed Minkowski sum of simplices, and obtain a formula for the volume of $P_M$. This gives a combinatorial expression for the degree of an arbitrary torus orbit closure in the Grassmannian
We prove that a curious generating series identity implies Fabers intersection number conjecture (by showing that it implies a combinatorial identity already given in arXiv:1902.02742) and give a new proof of Fabers conjecture by directly proving this identity.
In 2015, Brosnan and Chow, and independently Guay-Paquet, proved the Shareshian-Wachs conjecture, which links the Stanley-Stembridge conjecture in combinatorics to the geometry of Hessenberg varieties through Tymoczkos permutation group action on the