ترغب بنشر مسار تعليمي؟ اضغط هنا

Srift: Swift and Thrift Cloud-Based Distributed Training

67   0   0.0 ( 0 )
 نشر من قبل Liang Luo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cost-efficiency and training time are primary concerns in cloud-based distributed training today. With many VM configurations to choose from, given a time constraint, what configuration achieves the lowest cost? Or, given a cost budget, which configuration leads to the highest throughput? We present a comprehensive throughput and cost-efficiency study across a wide array of instance choices in the cloud. With the insights from this study, we build Srift, a system that combines runtime instrumentation and learned performance models to accurately predict training performance and find the best choice of VMs to improve throughput and lower cost while satisfying user constraints. With Pytorch and EC2, we show Srifts choices of VM instances can lead to up to 2x better throughput and 1.6x lower cost per iteration compared to baseline choices across various DNN models in real-world scenarios, leveraging heterogeneous setups and spot instances.



قيم البحث

اقرأ أيضاً

Cloud GPU servers have become the de facto way for deep learning practitioners to train complex models on large-scale datasets. However, it is challenging to determine the appropriate cluster configuration---e.g., server type and number---for differe nt training workloads while balancing the trade-offs in training time, cost, and model accuracy. Adding to the complexity is the potential to reduce the monetary cost by using cheaper, but revocable, transient GPU servers. In this work, we analyze distributed training performance under diverse cluster configurations using CM-DARE, a cloud-based measurement and training framework. Our empirical datasets include measurements from three GPU types, six geographic regions, twenty convolutional neural networks, and thousands of Google Cloud servers. We also demonstrate the feasibility of predicting training speed and overhead using regression-based models. Finally, we discuss potential use cases of our performance modeling such as detecting and mitigating performance bottlenecks.
Distributed training techniques have been widely deployed in large-scale deep neural networks (DNNs) training on dense-GPU clusters. However, on public cloud clusters, due to the moderate inter-connection bandwidth between instances, traditional stat e-of-the-art distributed training systems cannot scale well in training large-scale models. In this paper, we propose a new computing and communication efficient top-k sparsification communication library for distributed training. To further improve the system scalability, we optimize I/O by proposing a simple yet efficient multi-level data caching mechanism and optimize the update operation by introducing a novel parallel tensor operator. Experimental results on a 16-node Tencent Cloud cluster (each node with 8 Nvidia Tesla V100 GPUs) show that our system achieves 25%-40% faster than existing state-of-the-art systems on CNNs and Transformer. We finally break the record on DAWNBench on training ResNet-50 to 93% top-5 accuracy on ImageNet.
Data parallelism does a good job in speeding up the training. However, when it comes to the case when the memory of a single device can not host a whole model, data parallelism would not have the chance to do anything. Another option is to split the model by operator, or horizontally. Megatron-LM introduced a 1-Dimensional distributed method to use GPUs to speed up the training process. Optimus is a 2D solution for distributed tensor parallelism. However, these methods have a high communication overhead and a low scaling efficiency on large-scale computing clusters. To solve this problem, we investigate the 2.5-Dimensional distributed tensor parallelism.Introduced by Solomonik et al., 2.5-Dimensional Matrix Multiplication developed an effective method to perform multiple Cannons algorithm at the same time to increase the efficiency. With many restrictions of Cannons Algorithm and a huge amount of shift operation, we need to invent a new method of 2.5-dimensional matrix multiplication to enhance the performance. Absorbing the essence from both SUMMA and 2.5-Dimensional Matrix Multiplication, we introduced SUMMA2.5-LM for language models to overcome the abundance of unnecessary transmission loss result from the increasing size of language model parallelism. Compared to previous 1D and 2D model parallelization of language models, our SUMMA2.5-LM managed to reduce the transmission cost on each layer, which could get a 1.45X efficiency according to our weak scaling result between 2.5-D [4,4,4] arrangement and 2-D [8,8,1] arrangement.
Stochastic gradient descent (SGD) is an inherently sequential training algorithm--computing the gradient at batch $i$ depends on the model parameters learned from batch $i-1$. Prior approaches that break this dependence do not honor them (e.g., sum t he gradients for each batch, which is not what sequential SGD would do) and thus potentially suffer from poor convergence. This paper introduces a novel method to combine gradients called Adasum (for adaptive sum) that converges faster than prior work. Adasum is easy to implement, almost as efficient as simply summing gradients, and is integrated into the open-source toolkit Horovod. This paper first provides a formal justification for Adasum and then empirically demonstrates Adasum is more accurate than prior gradient accumulation methods. It then introduces a series of case-studies to show Adasum works with multiple frameworks, (TensorFlow and PyTorch), scales multiple optimizers (Momentum-SGD, Adam, and LAMB) to larger batch-sizes while still giving good downstream accuracy. Finally, it proves that Adasum converges. To summarize, Adasum scales Momentum-SGD on the MLPerf Resnet50 benchmark to 64K examples before communication (no MLPerf v0.5 entry converged with more than 16K), the Adam optimizer to 64K examples before communication on BERT-LARGE (prior work showed Adam stopped scaling at 16K), and the LAMB optimizer to 128K before communication on BERT-LARGE (prior work used 64K), all while maintaining downstream accuracy metrics. Finally, if a user does not need to scale, we show LAMB with Adasum on BERT-LARGE converges in 30% fewer steps than the baseline.
Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we fo cus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا