ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse momentum dependent forward neutron single spin asymmetries in transversely polarized $p$$+$$p$ collisions at $sqrt{s}=200$ GeV

98   0   0.0 ( 0 )
 نشر من قبل Brant M. Johnson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2015, the PHENIX collaboration has measured very forward ($eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.

قيم البحث

اقرأ أيضاً

We report the first measurement of transverse single-spin asymmetries in $J/psi$ production from transversely polarized $p+p$ collisions at $sqrt{s} = 200$ GeV with data taken by the PHENIX experiment in 2006 and 2008. The measurement was performed o ver the rapidity ranges $1.2 < |y| < 2.2$ and $ |y| < 0.35$ for transverse momenta up to 6 GeV/$c$. $J/psi$ production at RHIC is dominated by processes involving initial-state gluons, and transverse single-spin asymmetries of the $J/psi$ can provide access to gluon dynamics within the nucleon. Such asymmetries may also shed light on the long-standing question in QCD of the $J/psi$ production mechanism. Asymmetries were obtained as a function of $J/psi$ transverse momentum and Feynman-$x$, with a value of $-0.086 pm 0.026^{rm stat} pm 0.003^{rm syst}$ in the forward region. This result suggests possible nonzero trigluon correlation functions in transversely polarized protons and, if well defined in this reaction, a nonzero gluon Sivers distribution function.
We present a measurement of the transverse single-spin asymmetry for $pi^0$ and $eta$ mesons in $p^uparrow$$+$$p$ collisions in the pseudorapidity range $|eta|<0.35$ and at a center-of-mass energy of 200 GeV with the PHENIX detector at the Relativist ic Heavy Ion Collider. In comparison with previous measurements in this kinematic region, these results have a factor of 3 smaller uncertainties. As hadrons, $pi^0$ and $eta$ mesons are sensitive to both initial- and final-state nonperturbative effects for a mix of parton flavors. Comparisons of the differences in their transverse single-spin asymmetries have the potential to disentangle the possible effects of strangeness, isospin, or mass. These results can constrain the twist-3 trigluon collinear correlation function as well as the gluon Sivers function.
Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.
The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.
99 - M.H. Kim , O. Adriani , E. Berti 2020
Transverse single-spin asymmetries of very forward neutral pions generated in polarized $p + p$ collisions allow us to understand the production mechanism in terms of perturbative and non-perturbative strong interactions. During 2017 the RHICf Collab oration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized $p$+$p$ collisions at $sqrt{s}$ = 510 GeV. The large non-zero asymmetries increasing both in longitudinal momentum fraction $x_{F}$ and transverse momentum $p_{T}$ have been observed at low transverse momentum $p_{T} < 1$ GeV/$c$ for the first time at this collision energy. The asymmetries show an approximate $x_{F}$ scaling in the $p_{T}$ region where non-perturbative processes are expected to dominate. A non-negligible contribution from soft processes may be necessary to explain the nonzero neutral pion asymmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا