ترغب بنشر مسار تعليمي؟ اضغط هنا

The deformed Hermitian-Yang-Mills equation on almost Hermitian manifolds

166   0   0.0 ( 0 )
 نشر من قبل Liding Huang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the deformed Hermitian-Yang-Mills equation on closed almost Hermitian manifolds. In the case of hypercritical phase, we derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. As an application, we prove the existence of solutions for the deformed Hermitian-Yang-Mills equation under the condition of existence of a supersolution.



قيم البحث

اقرأ أيضاً

97 - Jixiang Fu , Dekai Zhang 2021
We study a new deformed Hermitian Yang-Mills Flow in the supercritical case. Under the same assumption on the subsolution as Collins-Jacob-Yau cite{cjy2020cjm}, we show the longtime existence and the solution converges to a solution of the deformed H ermitian Yang-Mills equation which was solved by Collins-Jacob-Yau cite{cjy2020cjm} by the continuity method.
We prove an existence result for the deformed Hermitian Yang-Mills equation for the full admissible range of the phase parameter, i.e., $hat{theta} in (frac{pi}{2},frac{3pi}{2})$, on compact complex three-folds conditioned on a necessary subsolution condition. Our proof hinges on a delicate analysis of a new continuity path obtained by rewriting the equation as a generalised Monge-Amp`ere equation with mixed sign coefficients.
244 - Jiaogen Zhang 2021
In this paper we consider the Monge-Amp`{e}re type equations on compact almost Hermitian manifolds. We derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. Finally, we also obtain an existence theorem if there exists an admissible supersolution.
We investigate stability of pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions. We show that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for these classes. Assuming th e graded object of a Jordan-Holder filtration to be locally free, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will be stable, in terms of intersection numbers on the base of the fibration. The arguments rely on adiabatic constructions of hermitian Yang-Mills connections together with the classical Donaldson-Uhlenbeck-Yau correspondence.
In this paper, we use the canonical connection instead of Levi-Civita connection to study the smooth maps between almost Hermitian manifolds, especially, the pseudoholomorphic ones. By using the Bochner formulas, we obtian the $C^2$-estimate of canon ical second fundamental form, Liouville type theorems of pseudoholomorphic maps, pseudoholomorphicity of pluriharmonic maps, and Simons integral inequality of pseudoholomorphic isometric immersion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا